Project description:Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of microbial populations (metaproteomics), yet not their genomic abundance (16S rRNA gene amplicon sequencing), supporting the hypothesis that metabolic activity may be more closely linked to climate than community composition.
Project description:In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. We performed mediation analyses to assess if EC smoking affects the oral microbiome, which in turn affects gingival inflammation. For this, we collected saliva and subgingival samples from EC users and non-users and profiled their microbial compositions via 16S rRNA amplicon sequencing. We then performed α-diversity, β-diversity, and taxonomic differential analyses to survey the disparity in microbial composition between EC users and non-users. We found significant increases in α-diversity in EC users and disparities in β-diversity between EC users and non-users.
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.
Project description:Total DNA was extracted from saliva and stool of the patients, amplified to collect amplicons of variable V3–V4 regions of the bacterial 16s rRNA gene and sequenced with MiSeq (2x300bp) Illumina platform.
Project description:The impact of mono-chronic S. stercoralis infection on the gut microbiome and microbial activities in infected participants was explored. The 16S rRNA gene sequencing of a longitudinal study with 2 sets of human fecal was investigated. Set A, 42 samples were matched, and divided equally into positive (Pos) and negative (Neg) for S. stercoralis diagnoses. Set B, 20 samples of the same participant in before (Ss+PreT) and after (Ss+PostT) treatment was subjected for 16S rRNA sequences and LC-MS/MS to explore the effect of anti-helminthic treatment on microbiome proteomes.
Project description:<p><strong>BACKGROUND:</strong> The human intestinal microbiome plays a central role in overall health status, especially in early life stages. 16S rRNA amplicon sequencing is used to profile its taxonomic composition; however, multiomic approaches have been proposed as the most accurate methods for study of the complexity of the gut microbiota. In this study, we propose an optimized method for bacterial diversity analysis that we validated and complemented with metabolomics by analyzing fecal samples.</p><p><strong>METHODS:</strong> Forty-eight different analytical combinations regarding (1) 16S rRNA variable region sequencing, (2) a feature selection approach, and (3) taxonomy assignment methods were tested. A total of 18 infant fecal samples grouped depending on the type of feeding were analyzed by the proposed 16S rRNA workflow and by metabolomic analysis.</p><p><strong>RESULTS:</strong> The results showed that the sole use of V4 region sequencing with ASV identification and VSEARCH for taxonomy assignment produced the most accurate results. The application of this workflow showed clear differences between fecal samples according to the type of feeding, which correlated with changes in the fecal metabolic profile.</p><p><strong>CONCLUSION:</strong> A multiomic approach using real fecal samples from 18 infants with different types of feeding demonstrated the effectiveness of the proposed 16S rRNA-amplicon sequencing workflow.</p>
Project description:We report the use of high-throughput sequencing technology to detect the microbial composition and abundance of mice grastic contents before and after Helicobacter pylori infection or Lactobacillus paracasei ZFM54 pretreatment/treatment. The genomic DNA was obtained by the QIAamp PowerFecal DNA Kit. Then, the DNA samples were sent to BGI Genomics Co., Ltd. (Shenzhen, China) for V3-V4 region of the 16S rRNA gene high-throughput sequencing with an Illumina MiSeq platform. DNA samples were sequenced using primers 338F (forward primer sequence ACTCCTACGGGAGGCAGCAG)-806R (reverse primer sequence GGACTACHVGGGTWTCTAAT). The sequencing analyses were carried out using silva138/16s database as a reference for the assignation of Amplicon Sequence Variant (ASV) at 100% similarity.
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:Swine confinement buildings (SCBs) represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, the aim of this study was to develop a method to investigate the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters from two exclusively housed pig types (porkers and gestating sows) and subsequently analyzed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The workflow helps to clarify diversity in bioaerosols from a taxonomic perspective, but also from a functional perspective.