Project description:Resource limitation is a major driver of ecological and evolutionary dynamics of organisms. Short-term responses to resource limitation include plastic changes in molecular phenotypes including protein expression. Yet little is known about the evolution of the molecular phenotype under longer-term resource limitation. Here, we combine experimental evolution of the green alga Chlamydomonas reinhardtii under multiple different non-substitutable resource limitation regimes with proteomic measurements to investigate evolutionary adaptation of the molecular phenotype. We demonstrate convergent proteomic evolution of core metabolic functions, including the Calvin-Benson cycle and gluconeogenesis, across different resource limitation selection environments. We did not observe proteomic changes consistent with optimized uptake of the different particular limiting resources.
Project description:Common wheat (T. aestivum) converged three subgenomes adapted to different environments. The combinatorial interaction between transcription factors (TFs) and regulatory elements (REs) defines a regulatory circuit that underlies subgenome convergence and divergence. Compared to the relatively conserved gene composition across subgenomes, the intergenic regions with abundant REs is drastically diversified by almost complete TE turnovers, raising major questions regarding how subgenome convergent and divergent regulation is encoded in the highly diversified intergenic regions, and the impact of TE evolution on regulatory conservation and innovation. In the present study, we created genome-wide TF binding catalog to assemble an extensive wheat regulatory network comprising connections among 182 TFs. The different effects of ancient and recent TE insertions on regulatory specificity were observed. Subgenome asymmetric TE expansion is an important source of subgenome divergent TFBS, which help explain the vast occupancy difference across subgenomes. Interestingly, the ancient expansion of RLC_famc1.4-derived TFBS occurred in more than 25% triads promoters. A significant fraction of these TE-derived TFBS subjected to region-specific evolutionary selections, resulting in subgenome-balanced TF binding but unbalanced degeneration of flanking TE sequences. These TE-derived subgenome convergent and divergent regulation linked to subgenome conserved and diversified pathways, suggesting that TEs are an important regulatory driving force contributed to polyploid evolution. Overall, this study demonstrated the impact of TEs on shaping the plasticity and adaptation of common wheat, enriched the theories of TE-promoted transcriptional innovation from the evolutionary aspects of polyploid regulation since first reported by McClintock.
2022-10-08 | GSE192815 | GEO
Project description:the population genetics of convergent adaptation in maize and teosinte
Project description:TRAP1 is a HSP90 molecular chaperone involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming. The role of TRAP1 in the adaptive response to hypoxia was investigated in human colorectal cancer.
Project description:We evolved Escherichia coli cells over 500 generations under five environments that include four abiotic stressors: osmotic, acidic, oxidative, n-butanol, and control The goal of the experiment: Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during adaptation and what the genetic basis of acquired stress resistance is. RNA profiles were obtained for six E. coli strains evolved for 500 generations under abiotic stressors; two technical replicates for each strain where sequenced by Illumina GAII analyzer
Project description:RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called “quasispecies”. Minor genetic variants promote their rapid adaptation allowing for emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assess the risk of cross-species transmission, and safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation.
Project description:We evolved Escherichia coli cells over 500 generations under five environments that include four abiotic stressors: osmotic, acidic, oxidative, n-butanol, and control The goal of the experiment: Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during adaptation and what the genetic basis of acquired stress resistance is.