Project description:Archaeological studies estimate the initial settlement of Samoa at 2,750 to 2,880 y ago and identify only limited settlement and human modification to the landscape until about 1,000 to 1,500 y ago. At this point, a complex history of migration is thought to have begun with the arrival of people sharing ancestry with Near Oceanic groups (i.e., Austronesian-speaking and Papuan-speaking groups), and was then followed by the arrival of non-Oceanic groups during European colonialism. However, the specifics of this peopling are not entirely clear from the archaeological and anthropological records, and is therefore a focus of continued debate. To shed additional light on the Samoan population history that this peopling reflects, we employ a population genetic approach to analyze 1,197 Samoan high-coverage whole genomes. We identify population splits between the major Samoan islands and detect asymmetrical gene flow to the capital city. We also find an extreme bottleneck until about 1,000 y ago, which is followed by distinct expansions across the islands and subsequent bottlenecks consistent with European colonization. These results provide for an increased understanding of Samoan population history and the dynamics that inform it, and also demonstrate how rapid demographic processes can shape modern genomes.
Project description:Aquatic plants are notoriously difficult to study systematically due to convergent evolution and reductionary processes that result in confusing arrays of morphological features. Plant systematists have frequently focused their attention on the "water lilies," putative descendants of the most archaic angiosperms. Classification of these 10 plant genera varies from recognition of one to three orders containing three to six families. We have used DNA sequence analysis as a means of overcoming many problems inherent in morphologically based studies of the group. Phylogenetic analyses of sequence data obtained from a 1.2-kilobase portion of the chloroplast gene rbcL provide compelling evidence for the recognition of three distinct lineages of "water lily" plants. Molecular phylogenies including woody Magnoliidae sequences and sequences of these aquatic plants depict Ceratophyllum as an early diverging genus. Our results support hypotheses that most taxonomic concepts of the order Nymphaeales reflect polyphyletic groups and that the unusual genus Ceratophyllum represents descendants of some of the earliest angiosperms.
Project description:Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.
Project description:Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life-yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor ("Anc.11-S") of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1-Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11-Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Project description:Humans have been colonized by Helicobacter pylori for at least 50,000 years and probably throughout their evolution. H. pylori has adapted to humans, colonizing children and persisting throughout life. Most strains possess factors that subtly modulate the host environment, increasing the risk of peptic ulceration, gastric adenocarcinoma, and possibly other diseases. H. pylori genes encoding these and other factors rapidly evolve through mutation and recombination, changing the bacteria-host interaction. Although immune and physiologic responses to H. pylori also contribute to pathogenesis, humans have evolved in concert with the bacterium, and its recent absence throughout the life of many individuals has led to new human physiological changes. These may have contributed to recent increases in esophageal adenocarcinoma and, more speculatively, other modern diseases.
Project description:A study looking at the genetic basis and evolutionary history of the female limited alternative life-history strategy, ALba, found in the butterfly genus Colias.