Project description:Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome and the cecal microbiome in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups (n = 12) and fed three different diets with either 0% (HI0), 7.5% (HI7.5) or 15% (HI15) defatted HI meal for 35 d. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield and apparent ileal digestibility (AID) of 12 amino acids were higher in group HI15 than in group HI0 (P > 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid and isobutyric acid in the cecal digesta were lower in group HI15 than in the other two groups (P > 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs HI0, respectively, (P > 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the three groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.
Project description:Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 male, 1-day-old Cobb 500 broilers were randomly assigned to three different groups and fed three different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a three-phase feeding system for 35 days. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of two low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.
Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function, the immune system and systemic physiology. We used casein (CAS), partially delactosed whey powder (DWP), spray dried porcine plasma (SDPP), soybean meal (SBM), wheat gluten meal (WGM) and yellow meal worm (YMW) as protein sources. We investigated the effects of feeding mice during a period of four weeks on semi-synthetic diets containing 30% of six different protein sources. Microarrays were used to detail the global gene expression in the ileal mucosae of mice. Male C57BL/6J mice were stratified according to bodyweight and litter of origin into six dietary treatment groups. These mice were fed for four weeks with semi-synthetic diets containing one of the following protein sources. At the end of four weeks, mice were sacrificed by euthenesia and ileal tissue samples (scrapings) were collected for RNA extraction and hybridization on Affymetrix microarrays. Soybean meal (SBM) diet group served as reference to make comparisons with other experimental diets.
Project description:White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially successful hybrid striped bass (M. chrysops x M. saxatilis). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision). Significant differential expressed genes and gene ontology of pairwise comparisons between control diet and each test diet are presented and discussed.
Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
Project description:Halibut fed two different diets containing either fishmeal(control) or 25-30% soybean meal for 20 days. Diets compared from fish (5) at day 1, day 10 and day 20 to follow the developement of the soybean-induced enteritis. All experimental samples run against universal RNA (cDNA prepared from 1 ug of a pooled universal RNA consisting of equal amounts of RNA from five developmental stages from hatching until post-metamorphosis). Keywords: Diet comparison over a time course, experimental diet compared to a reference. Two colour design, Soybean meal (SBM) fed vs control fed, 3 time points, 3 biological replicates per time point.
Project description:Single cell proteins, such as Candida utilis, are known to have immunomodulating effects in the distal intestine (DI) of Atlantic salmon, whereas soybean meal (SBM) can cause soybean meal induce enteritis (SBMIE). Inflammatory or immunomodulatory stimuli at the local level in the intestine may alter the plasma protein profile of Atlantic salmon. These changes can be helpful tools in diagnosis for fish diseases and indicators for fish health. The present work aimed to identify local intestinal tissue responses and changes in plasma protein profiles of Atlantic salmon fed C. utilis yeast, SBM, or combined diets. Fish meal (FM) based diet was used as a control diet and the six experimental diets were: FM diet with 200 g/kg C. utilis (FM200CU) and five diets containing 200 g/kg SBM together with 0 (SBM group), 25, 50, 100 or 200 g/kg C. utilis (SBM25CU, SBM50CU, SBM100CU and SBM200CU groups, respectively). Intestine morphology of fish fed FM200CU where not affected whereas SBM group presented changes characteristic of SBMIE. Low inclusion of C. utilis in SBM diet showed a modulation of immune cell populations, but did not alleviate inflammatory symptom.
Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function. The transcriptional response of intestinal mucosal tissue (jejunum and ileum) served as parameters for the local response. Growing pigs (BW 35 kg/approx. 10 weeks) were fed with experimental diets containing a single, common or new protein sources viz. soybean meal (SBM), black soldier fly larvae (BSF), spray dried blood plasma (SDPP), rapeseed meal (RSM), and wheat gluten meal (WGM) over a period of 4 weeks.
Project description:This study was designed to address key questions concerning the use of alternative protein sources for animal feeds and addresses aspects such as their nutrient composition and impact on gut function, the immune system and systemic physiology. We used casein (CAS), partially delactosed whey powder (DWP), spray dried porcine plasma (SDPP), soybean meal (SBM), wheat gluten meal (WGM) and yellow meal worm (YMW) as protein sources. We investigated the effects of feeding mice during a period of four weeks on semi-synthetic diets containing 30% of six different protein sources. Microarrays were used to detail the global gene expression in the ileal mucosae of mice.