Project description:Regulation of gene expression is highly conserved between vertebrates, yet the genomic binding patterns of transcription factors are poorly conserved, suggesting that other mechanisms may contribute. The spatial organization of chromosomes in the nucleus is known to affect gene activity, but it is unclear to what extent this organization is conserved in evolution. Genome-wide maps of nuclear lamina (NL) interactions show that human and mouse chromosomes have highly similar folding patterns inside the nucleus. Breaks in synteny are often located at transition points between NL interacting and intra-nuclear regions. Data were compared against data from Peric-Hupkes, Meuleman et al. (Molecular Cell, 2010). LaminB1-chromatin interactions were assayed in human ESCs and human HT1080 cells. LaminA-chromatin interactions were assayed in human HT1080 cells. For the all samples there were 2 biological replicates, that were hybridized in a dye-swap design.
Project description:The three-dimensional organization of chromosomes within the nucleus and its dynamics during differentiation are largely unknown. We present a genome-wide analysis of the interactions between chromatin and the nuclear lamina during differentiation of mouse embryonic stem cells (ESCs) into lineage-committed neural precursor cells (NPCs) and terminally differentiated astrocytes. Chromatin in each of these cell types shows a similar organization into large lamina associated domains (LADs), which represent a transcriptionally repressive environment. During sequential differentiation steps, lamina interactions are progressively modified at hundreds of genomic locations. This remodeling is typically confined to individual transcription units and involves many genes that determine cellular identity. From ESCs to NPCs, the majority of genes that move away from the lamina are concomitantly activated. Strikingly, a significant amount remain inactive yet become primed for activation by further differentiation. These results suggest that lamina-genome interactions are widely involved in the control of gene expression programs during lineage commitment and terminal differentiation. laminB1-chromatin interactions were assayed in 4 different mouse cell-types. For each cell-type there were 2 biological replicates, that were hybridized in a dye-swap design.
Project description:Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of ~400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts are more sensitive to a change in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, single-cell gene expression and chromatin accessibility analysis shows that loci with consistent NL contacts are expressed at lower levels and are more consistently inaccessible than loci with lower contact frequencies. These results highlight fundamental principles of single cell chromatin organization. Hi-C Data
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD M-bM-^@M-^S NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome M-bM-^@M-^S NL interactions. RNA was isolated from three independent Drosophila Kc167 cell cultures. Expression profiles were made of self-self hybridizations on spotted INDAC long oligo arrays. The three replicates were averaged.
Project description:The mammalian cell nucleus displays a remarkable spatial segregation of active euchromatic from inactive heterochromatic genomic regions. In conventional nuclei, euchromatin is localized in the nuclear interior and heterochromatin at the nuclear periphery. In contrast, rod photoreceptors in nocturnal mammals have inverted nuclei, with a dense heterochromatic core and a thin euchromatic outer shell. This inverted architecture likely converts rod nuclei into microlenses to facilitate nocturnal vision, and may relate to the absence of particular proteins that tether heterochromatin to the lamina. However, both the mechanism of inversion and the role of interactions between different types of chromatin and the lamina in nuclear organization remain unknown. To elucidate this mechanism we performed Hi-C and microscopy on cells with inverted nuclei and their conventional counterparts. Strikingly, despite the inversion evident in microscopy, both types of nuclei display similar Hi-C maps. To resolve this paradox we developed a polymer model of chromosomes and found a universal mechanism that reconciles Hi-C and microscopy for both inverted and conventional nuclei. Based solely on attraction between heterochromatic regions, this mechanism is sufficient to drive phase separation of euchromatin and heterochromatin and faithfully reproduces the 3D organization of inverted nuclei. When interactions between heterochromatin and the lamina are added, the same model recreates the conventional nuclear organization. To further test our models, we eliminated lamina interactions in models of conventional nuclei and found that this triggers a spontaneous process of inversion that qualitatively reproduces the pathway of morphological changes during nuclear inversion in vivo. Together, our experiments and modeling suggest that interactions among heterochromatic regions are central to phase separation of the active and inactive genome in inverted and conventional nuclei, while interactions with the lamina are essential for building the conventional architecture from these segregated phases. Ultimately our data suggest that an inverted organization constitutes the default state of nuclear architecture.
Project description:Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of ~400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts are more sensitive to a change in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, single-cell gene expression and chromatin accessibility analysis shows that loci with consistent NL contacts are expressed at lower levels and are more consistently inaccessible than loci with lower contact frequencies. These results highlight fundamental principles of single cell chromatin organization. In this dataset, single-cell mRNA sequencing results from 96 single KBM7 cells have been deposited
Project description:To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase-scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here we show that very specific long-range interactions are anchored by cohesin/CTCF sites, but not cohesin-only or CTCF-only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post-mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin-dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin-bound and non-bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programs within them. Hi-C, ChIP-Seq and RNA-Seq experiments were conducted in mouse neural stem cells and mouse astrocytes
Project description:To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase-scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here we show that very specific long-range interactions are anchored by cohesin/CTCF sites, but not cohesin-only or CTCF-only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post-mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin-dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin-bound and non-bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programs within them. Hi-C, ChIP-Seq and RNA-Seq experiments were conducted in mouse neural stem cells and mouse astrocytes
Project description:To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase-scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here we show that very specific long-range interactions are anchored by cohesin/CTCF sites, but not cohesin-only or CTCF-only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post-mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin-dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin-bound and non-bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programs within them. Hi-C, ChIP-Seq and RNA-Seq experiments were conducted in mouse neural stem cells and mouse astrocytes
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD – NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome – NL interactions. DamID experiments for Lamin, CTCF, SU(HW), GAF, DWG, and BEAF-32, and for Lamin after overexpression and after knockdown of SU(HW), were performed in Drosophila cell cultures. Samples were hybridized to 380k NimbleGen arrays with 300 bp probe spacing. Every experiment was done in duplicate in the reverse dye orientation. The supplementary file 'GSE20311_DamID_norm_mean.txt' contains the mean log2(Dam-fusion/Dam-only) values of two replicates.