Project description:Interaction of microbes affects the growth, metabolism and differentiation of members of the community. While direct and indirect competitions, like spite and nutrient consumption have negative effect on each other, microbes also evolved in nature not only to fight, but in some cases to adapt or support each other while increasing the fitness of the community. Presence of bacteria and fungi in the soil results in interactions and various examples were described, including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger interacts with the fungal partner, attaches and grows on the hyphae. Using dual transcriptome experiment, we show that both fungi and bacteria alter their metabolisms during the interaction. Interestingly, the transcription of genes related to the antifungal and antibacterial defense mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Our microarray experiments provide a novel insight into the mutual interaction of a bacterium and a fungus.
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:Interaction of microbes affects the growth, metabolism and differentiation of members of the community. While direct and indirect competitions, like spite and nutrient consumption have negative effect on each other, microbes also evolved in nature not only to fight, but in some cases to adapt or support each other while increasing the fitness of the community. Presence of bacteria and fungi in the soil results in interactions and various examples were described, including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger interacts with the fungal partner, attaches and grows on the hyphae. Using dual transcriptome experiment, we show that both fungi and bacteria alter their metabolisms during the interaction. Interestingly, the transcription of genes related to the antifungal and antibacterial defense mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Our microarray experiments provide a novel insight into the mutual interaction of a bacterium and a fungus. Aspergillus niger were grown with and without Bacillus subtilis. Biological triplicates were made for both conditions, Affymetrix microarray experiments were performed on these samples.
Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:Root exudates contain specialised metabolites that affect the plant’s root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability shapes root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA and formed AMPO. AMPO forming bacteria are enriched in the rhizosphere of benzoxazinoid-producing maize and can use MBOA as carbon source. We identified a novel gene cluster associated with AMPO formation in microbacteria. The first gene in this cluster, bxdA encodes a lactonase that converts MBOA to AMPO in vitro. A deletion mutant of the homologous bxdA genes in the genus Sphingobium, does not form AMPO nor is it able to use MBOA as a carbon source. BxdA was identified in different genera of maize root bacteria. Here we show that plant-specialised metabolites select for metabolisation-competent root bacteria. BxdA represents a novel benzoxazinoid metabolisation gene whose carriers successfully colonize the maize rhizosphere and thereby shape the plant’s chemical environmental footprint
Project description:ISR is the initiation of a beneficial association by certain fungi in the rhizosphere followed by the establishment of belowground-aboveground signaling communication may result in the induction of heightened host resistance to foliar and stem pathogens, as well as insect pests.
Project description:Metagenomics analysis reveals co-infection of fungi and bacteria isolated from different regions of brain tissue from elderly persons and patients with Alzheimer's disease.
Project description:Interventions: ntestinal polyp gruop and colorectal cancer gruop:Nil
Primary outcome(s): bacteria;fungi;archaea;virus
Study Design: Factorial
Project description:Interventions: healthy people, intestinal polyp group and intestinal cancer group.:Nil
Primary outcome(s): bacteria;fungi;phages
Study Design: Factorial
Project description:It has been performed a genome-wide analysis of gene expression of the root-colonizing bacterium Pseudomonas putida KT2440 in the rhizosphere of corn (Zea mays var. Girona. To identify reliable rhizosphere differentially expressed genes, rhizosphere populations of P. putida bacteria cells were compared with three alternative controls: i) planktonic cells growing exponentially in rich medium (LB), ii) planktonic cells in stationary phase in LB, and iii) sessile populations established in sand microcosms, under the same conditions used to grow inoculated corn plants.