Project description:The aim of the study was to determine the protein composition of cornified claws of the western clawed frog (Xenopus tropicalis) in comparison to clawless toe tips and back skin. Cornified claws develop on toes I, II, III of the hind limbs, which we refer to as hind limb inner (HI) toes. Toes IV, V of the hind limbs, here referred to as hind limb outer (HO) toes lack claws. Proteins were prepared from HI toe tips including claws, HO toe tips and back skin (BSK) of frogs each (F1, F2, F3) and subjected to proteomic analysis.
Project description:Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus in which the BMP inhibitor Noggin can be over-expressed at any time during development. We have previously shown that activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. In the current study, we have taken advantage of this transgenic line to directly compare gene expression in same stage regenerating vs. non-regenerating hind limb buds. Using Affymetrix gene chip analysis, we have identified genes whose expression levels are linked to regenerative success. These include the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Analysis of overrepresented Gene Ontology functional groupings suggests that successful regeneration in the Xenopus hind limb depends on induction of stress response pathways. Furthermore, as expected, genes involved in embryonic development and growth are also significantly over-represented in regenerating early hind limb buds. Keywords: Differential expression, regeneration
Project description:Reporting data obtained from dividing the stage 51 Xenopus laevis hind limb bud into thirds along the proximal distal axis (proximal, medial, distal) and sequencing the extracted RNA to investigate differences in gene expression
Project description:Xenopus laevis tadpoles display a decreasing capacity to regenerate their limbs following injury according to developmental stage. By comparing the regenerative response during the naturally occurring regeneration-competent, -restricted and -incompetent stages, scRNAseq can reveal cell type changes that are required for successful regeneration.
Project description:Analysis of whole body of unfertilized eggs and two-cell stage, 16-cell stage, stage 8, stage 9, stage 10.5, stage 12, stage 15, stage 20, stage 25, stage 30, stage 35 and stage 40 embryos. Results provide insight into the global molecular changes in Xenopus embryogenesis.