Project description:Breast cancer is genetically and clinically heterogeneous. Triple negative cancer (TNBC) is a subtype of breast cancer usually associated with poor outcome and lack of benefit from target therapy. A pathway analysis in a microarray study was performed using TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), Low density lipoprotein receptor-related protein 6 (LRP6) and transcription factor 7 (TCF7) has been observed in TNBC. Focus was given to the Wnt pathway receptor, FZD7. To validate its function, inhibition of FZD7 using FZD7shRNA was carried out. Notably decreased cell proliferation, suppressed invasiveness and colony formation in triple negative MDA-MB-231 and BT-20 cells were observed. Mechanism study indicated that these effects occurred through silencing the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of ï?¢-catenin and decreased transcriptional activity of TCF7. In vivo study revealed that FZD7shRNA significantly suppressed the tumor formation in xenotransplation mice due to decrease cell proliferation. Our finding suggests that FZD7 involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC. Thus, FZD7 may be a biomarker and a potential therapeutic target for triple negative breast cancer. 14 pretreatment non-triple negative breast tumors compare with 5 triple negative breast tumor.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of Kenyan TNBC patients and identify potential biomarkers specific to Kenyan population. The transcriptome sequencing of tumors from Kenyan TNBC patients and comparisons with African American and Caucasian TNBC transcriptomes revealed several interesting targets and dysregulated pathways.
Project description:N-acylsphingosine amidohydrolase (ASAH1) expression is elevated in many cancer types including breast cancer. Therefore, we analyzed the role of ASAH1 in TNBC. Inhibition of ASAH1 expression in TNBC cell lines resulted in decreased tumor growth and metastasis
Project description:Recent meta-analyses suggest triple-negative breast cancer (TNBC) is a heterogenous disease. In this study we sought to define these TNBC subtypes and identify subtype-specific markers and targets. We identified and confirmed four distinct, stable TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA). RNA profiling analysis was conducted on 198 TNBC tumors (ER-negativity defined as Allred Scale value â¤2) with >50% cellularity (discovery set: n=84; validation set: n=114)
Project description:Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in the pro-proliferative KRAS signaling pathway as well as epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell proliferation, migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. Taken together, our work indicates that TLX retards the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of African American and Caucasian TNBC patients and identify race specific biomarkers.
Project description:Breast cancers lacking receptors for estrogen, progesterone or HER2 on their cell surface are called triple-negative breast cancers (TNBCs). TNBCs account for ~15-20% of all invasive breast cancers and do not benefit from anti-hormonal or anti-HER2 treatments. Although patients with TNBC can initially respond to chemotherapy, they do have worse overall prognosis compared to other breast cancer subtypes. Unfortunately, TNBCs lack clear targetable ‘driver’ oncogenes. Thus, there is an unmet need for strategies to improve the therapeutic options for these patients. We used microarrays to assess differences in gene expression in triple-negative breast cancer cells in response to the platinum-based chemotherapeutic agent cisplatin. The purpose was to find drug induced changes in gene expression level that could differentiate cisplatin sensitive from cisplatin resistant TNBC cell lines.
Project description:Recent meta-analyses suggest triple-negative breast cancer (TNBC) is a heterogenous disease. In this study we sought to define these TNBC subtypes and identify subtype-specific markers and targets. We identified and confirmed four distinct, stable TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA).
Project description:Breast cancer is genetically and clinically heterogeneous. Triple negative cancer (TNBC) is a subtype of breast cancer usually associated with poor outcome and lack of benefit from target therapy. A pathway analysis in a microarray study was performed using TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), Low density lipoprotein receptor-related protein 6 (LRP6) and transcription factor 7 (TCF7) has been observed in TNBC. Focus was given to the Wnt pathway receptor, FZD7. To validate its function, inhibition of FZD7 using FZD7shRNA was carried out. Notably decreased cell proliferation, suppressed invasiveness and colony formation in triple negative MDA-MB-231 and BT-20 cells were observed. Mechanism study indicated that these effects occurred through silencing the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of beta-catenin and decreased transcriptional activity of TCF7. In vivo study revealed that FZD7shRNA significantly suppressed the tumor formation in xenotransplation mice due to decrease cell proliferation. Our finding suggests that FZD7 involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC. Thus, FZD7 may be a biomarker and a potential therapeutic target for triple negative breast cancer.