Project description:Genome-wide DNA methylation profiling of umbilical cord blood buffy coat DNA samples. The Illumina Infinium MethylationEPIC array was used to obtain DNA methylation profiles across approximately 850,000 CpGs. Samples included 557 cord blood samples born to obese women in the UPBEAT trial, with and without gestational diabetes mellitus (GDM), to determine the association between maternal GDM and hyperglycaemia during pregnancy on the methylation in the infant.
Project description:As one of the most common maternal comorbidities, gestational diabetes mellitus (GDM) and preeclampsia (PE) are associated with maternal and infant health. Although the pathogenesis of PE and GDM remains controversial, oxidative stress is thought to be involved in the underlying pathology of GDM and PE. Protein lysine acetylation (Kac) plays an important regulatory role in biological processes. There is little data regarding the association of the maternal acetylome with GDM and PE. This study aimed to assess the multi-omics (proteome and acetylome) potential value in the underlying pathology for GDM and PE by label-free quantification proteomics technology. In our study, we included placental tissue from healthy individuals (n=6), GDM patients (n=6), and PE patients (n=6). We identified 22 overlapping DEPs (differentially expressed proteins) and 192 overlapping DAPs (differentially acetylated proteins) between the GDM and PE groups. Furthermore, 192 overlapping DAPs were mainly enriched in endoplasmic reticulum stress and ferroptosis pathways. Interestingly, endoplasmic reticulum stress, ferroptosis, and oxidative stress are believed to be related to each other. We also identified that acetylation of the HSP90AA1, HSPA8, PDIA3, GPX4, TF, and CP might serve as novel markers and better therapeutic targets in both complications. We thoroughly analyzed the key characteristics of proteome and acetylome in GDM and PE placental tissues, which may be useful for exploring the underlying pathology and discovering new biomarkers and therapeutic targets.
Project description:Pancreatic β-cell function impairment is a key mechanism for developing gestational diabetes mellitus (GDM). Maternal and placental exosomes regulate maternal and placental responses during hyperglycemia. Studies have associated exosomal micro RNAs (miRNAs) with GDM development. To date, no studies have been reported that evaluate the profile of miRNAs present in maternal and placental exosomes in the early stages of gestation from pregnancies that develop GDM. We used microarrays to assess whether early pregnancy maternal and placental exosomal miRNA profiles vary according to pancreatic β-cell function in women who will develop GDM (preGDM).
Project description:The oligo micoarrays were used to determine gene expression profiles of peripheral blood mononuclear cells from gestational diabetes mellitus (GDM) patients.
Project description:Maternal body size, nutrition, and hyperglycemia contribute to neonatal body size and composition. There is little information on maternal-fetal transmission of messages which influence fetal growth. We analyzed adipocyte-derived small extracellular vesicular (ADsEV) microRNAs in maternal and cord blood to explore their adipogenic potential. Differential expression (DE) of ADsEV miRNAs in adipose vs. lean neonates was studied before and after adjustment for maternal gestational diabetes mellitus (GDM), adiposity, and vitamin B12-folate status.
Project description:Gestational diabetes mellitus (GDM) affects approximately 18% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 Beadchips) and expression (Affymetrix Transcriptome Microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into the molecular basis of GDM induced fetal (re)programming. Bisulphite converted DNA extracted from the placentas (maternal-side) of 41 clinically-confirmed cases of GDM and 41 pregnancies without maternal complications were hybridised to the Illumina Infinium HumanMethylation450 Beadchips
Project description:Gestational diabetes mellitus (GDM) affects approximately 18% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 Beadchips) and expression (Affymetrix Transcriptome Microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into the molecular basis of GDM induced fetal (re)programming. RNA extracted from the placentas (maternal-side) of 30 clinically-confirmed cases of GDM and 25 pregnancies without maternal complications was hybridised to the GeneChip® Human Transcriptome Array 2.0 (Affymetrix). Four samples were run in triplicate.
Project description:Context: Context: Gestational diabetes (GDM) has profound effects on the intrauterine metabolic milieu and is linked to obesity and diabetes in offspring, but the mechanisms driving these effects remain largely unknown. Alterations gene expression in amniocytes exposed to GDM in utero may identify potential mechanisms leading to metabolic dysfunction later in life. Objective: Objective: To profile changes in the transcriptome in human amniocytes exposed to GDM Methods: A nested case-control study was performed in second trimeseter amniocytes matched for offspring sex, maternal race/ethnicity, maternal age, gestational age at amniocentesis, gestational age at birth and gestational diabetes status. Sex-specific RNA-sequencing was completed and gene expression changes were identified. Results: Expression of interferon-stimulated genes was increased in GDM amniocytes accounting for 6 of the top 10 altered genes (q<0.05). Enriched biological pathways in GDM anmiocytes included pathways involving inflammation, the interferon response, fatty liver disease, monogenic diabetes and atherosclerosis. Conclusion: In a unique repository of human amniocytes exposed to GDM in utero, trancriptome analysis identified enrichment of inflammation and interferon-related pathways.
Project description:Genome wide DNA methylation profiling of cord blood cells obtained from gestational diabetes mellitus (GDM) pregnancies. The Illumina EPIC methylation beadchip array was used to obtain DNA methylation profiles across approximately 850,000 CpG dinucleotide methylation loci in DNA isolated from cord blood. Samples include 165 GDM subjects.