Project description:The purpose of this study is to explore the effect of adding Lithospermum purpurea to the diet of soybean meal instead of 50% fish meal on the intestinal health of pearl gentian Grouper through Transcriptome
Project description:The sustainable development of modern aquaculture must rely on a significant reduction of the fish meal (FM) used in aquafeed formulations. However, FM substitution with alternative ingredients in diets for carnivorous fish species often showed reduced nutrient absorption, significantly perturbed metabolisms and histological changes at both hepatic and intestinal level. In the present study, adult rainbow trout (Oncorhynchus mykiss) were fed three different experimental aquafeed formulations. A control diet with higher FM content (27.3%) than two test formulations in which fish meal was substituted with two more sustainable and promising alternatives: insect meal (Hermetia illucens larvae=10.1%, FM=11.6%) and poultry by-products meal (PBM=14.8%; FM=11.7%). Combined metabolomics and proteomics analyses of fish liver, together with histological examination of liver and intestine demonstrated that a well balanced formulation of nutrients in the three diets allowed high metabolic compatibility of either substitutions, paving the way for innovative and sustainable use of novel raw materials for the fish feed industry. Results show that the main metabolic pathways of nutrient absorption and catabolism were essentially unaltered by alternative feed ingredients, and also histological alterations were negligible. It is demonstrated that substitution of fish meal with sustainable alternatives does not impact on fish metabolism, given proper efforts are put in fulfilling nutritional requirements of rainbow trout.
Project description:Previous works in the framework of EU ARRAINA Project evidenced a pro-inflammatory condition in gilthead sea bream (Sparus aurata) fed extremely low fish meal/fish oil diets, and this effect was mostly reversed by butyrate supplementation. The hypothesis of work is that these nutritionally-mediated changes can be extensive to intestinal mucus proteome and gut microbiota, which in turn could modify disease outcome.s If so, the prevalence and progression of the disease might be also modified by diet composition and feed additives. Gilthead sea bream fingerlings were fed with control and experimental diets formulated by BioMar until two year-old. FM was added at 25% in the control diet (D1) and at 5% in the other three diets (D2-D4). Added oil was either FO (D1 control diet) or a blend of vegetable oils, replacing the 58% (D2) and the 84% (D3-D4 diets) of FO. A commercial sodium butyrate preparation (NOREL, BP70) was added to the D4 diet at 0.4%. At month 20, 6 fish per each dietary treatment were sampled for iTRAQ profiling and fingerprinting of intestinal mucus proteome. Mucus collected from anterior and posterior intestine segments was trypsin digested, labelled with iTRAQ reagents, isoelectrofocused and resolved by LC-MS/MS. More than 1000 proteins were unequivocally annotated and principal component analysis clearly separated anterior and posterior segments. The diet effect with changes in the abundance of approximately 120 proteins was restricted to anterior section with a reversion of the pattern of the extreme diet (D3 fish) with dietary butyrate supplementation. Butyrate supplementation also reversed the decrease of microbiotay diversity associated with D3 feeding, and led to a improvement the disease outcomes in fish challenged with Photobacterium damselae and the intestinal parasite Enteromyxum leei.
Project description:In the context of replacing fish meal and fish oil in feeds for aquaculture, rainbow trout alevins received from first-feeding onwards, one of the three experimental diets: V (100% plant-based), C (mix of FM-FO & plant ingredients) or M (100% FM-FO based). The long term effects of such dietary replacement on the intestinal (mid gut) and hepatic transcriptome were studied in juveniles after a 7-month feeding trial at 7°C.
Project description:Single cell proteins, such as Candida utilis, are known to have immunomodulating effects in the distal intestine (DI) of Atlantic salmon, whereas soybean meal (SBM) can cause soybean meal induce enteritis (SBMIE). Inflammatory or immunomodulatory stimuli at the local level in the intestine may alter the plasma protein profile of Atlantic salmon. These changes can be helpful tools in diagnosis for fish diseases and indicators for fish health. The present work aimed to identify local intestinal tissue responses and changes in plasma protein profiles of Atlantic salmon fed C. utilis yeast, SBM, or combined diets. Fish meal (FM) based diet was used as a control diet and the six experimental diets were: FM diet with 200 g/kg C. utilis (FM200CU) and five diets containing 200 g/kg SBM together with 0 (SBM group), 25, 50, 100 or 200 g/kg C. utilis (SBM25CU, SBM50CU, SBM100CU and SBM200CU groups, respectively). Intestine morphology of fish fed FM200CU where not affected whereas SBM group presented changes characteristic of SBMIE. Low inclusion of C. utilis in SBM diet showed a modulation of immune cell populations, but did not alleviate inflammatory symptom.
Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
Project description:We performed RNA-seq, H3K27ac ChIP-seq, and HNF4a ChIP-seq on jejunal intestinal epithelial cells, which are primarily responsible for the absorption of fatty acids, in four conditions: Germ-free (GF), Germ-free plus high fat meal (GF+HFM), ex-GF colonized with a conventional microbiota for 2 weeks (Colonized, CV), and Colonized plus high fat meal (CV+HFM). We, for the first time, map genomewide HFM responsive regulatory regions in the intestine. We identify that in the absence of microbes the HNF4a transcriptional program supports a FAO program in enterocytes while suppressing a proliferation program.
Project description:Atlantic salmon individuals were grown, from fresh water to salt water in tanks on diets with low fish meal (10%) and 1-1.25% total n-3 LC-PUFA levels. Dietary n-3 LC-PUFAs were supplemented by 1) fish oil (FO), 2) Schyzochytrium limacinum biomass (AA). Further, the fish from all treatments were mixed and redistributed in sea cages reared to slaughter (ca. 3kg body weight) on either FO or AA. Transcriptomics analyses in liver and intestinal tissues revealed significant dietary effects on the expression of immune modulating, as well as ion, lipid, protein and xenobiotic metabolism genes.