Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention. Total RNA was isolated from three independently-generated sets of flow sorted bone marrow monocytes (CD11b+ CD45high CD115+ Ly6G- cells) and brainstem microglia (CD11b+ CD45low CD115low Ly6G- cells) for Illumina RNA-Seq, and two additional pools were subsequently generated and submitted for Affymetrix Mouse Exon 1.0ST microarray. Two of the RNA-Seq samples were additionally analyzed by the microarray, for a total of 6 samples (3 monocyte, 3 microglia) in each platform. Data outputs were analyzed by two analysis methods each (RNA-Seq data: ALEXA-Seq and Cufflinks; microarray data: Partek and Aroma). All four lists were merged into a new high-confidence gene list of transcripts that were significantly differentially expressed (DE) in three out of the four analyses. In this dataset, we includeRNA-Seq data obtained from flow sorted mouse bone marrow monocytes and brainstem microglia.
Project description:Objective: Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome. Methods: High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM. Results: We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype. Significance: These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention. Total RNA was isolated from three independently-generated sets of flow sorted bone marrow monocytes (CD11b+ CD45high CD115+ Ly6G- cells) and brainstem microglia (CD11b+ CD45low CD115low Ly6G- cells) for Illumina RNA-Seq, and two additional pools were subsequently generated and submitted for Affymetrix Mouse Exon 1.0ST microarray. Two of the RNA-Seq samples were additionally analyzed by the microarray, for a total of 6 samples (3 monocyte, 3 microglia) in each platform. Data outputs were analyzed by two analysis methods each (RNA-Seq data: ALEXA-Seq and Cufflinks; microarray data: Partek and Aroma). All four lists were merged into a new high-confidence gene list of transcripts that were significantly differentially expressed (DE) in three out of the four analyses. In this dataset, we include exon expression data obtained from flow sorted mouse bone marrow monocytes and brainstem microglia.
Project description:We assessed the roles of repopulating microglia in brain repair using mouse models. In this project, we show that removal of microglia from the mouse brain has little impact on the outcome of TBI but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. As a part of the experimental approaches, we perform bulk RNA sequencing experiments to unbiasedly profile the transcriptome of repopulating microglia. We identified unique gene signatures from repopulating microglia cells and infer how these cells modulate the microenvironment after TBI.
Project description:Microglia, brain-resident macrophages, have been proposed to play an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Using a genetically modified mouse which lacks microglia (Csf1r ∆FIRE/∆FIRE), we investigate the effect on gene expression of the presence or absence of microglia in the developing mouse brain.
Project description:Microglia, brain-resident macrophages, have been proposed to play an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Using a genetically modified mouse which lacks microglia (Csf1r ∆FIRE/∆FIRE), we investigate the effect on gene expression in particular cell types of the presence or absence of microglia in the developing mouse brain.
Project description:Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by an extended polyglutamine repeat in the N-terminus of the huntingtin (Htt) protein. Reactive microglia and elevated cytokine levels are observed in the brains of HD patients, but the extent to which neuroinflammation results from extrinsic or cell-autonomous mechanisms is unknown. Furthermore, the impact of microglia activation on the pathogenesis of HD remains to be established. Using genome-wide approaches, we show that expression of mutant Htt in microglia promotes cell-autonomous pro-inflammatory transcriptional activation within microglia by increasing the expression and transcriptional activities of the myeloid lineage-determining factors PU.1 and C/EBPs. Elevated levels of PU.1 and its target genes are observed in the brains of mouse models and HD individuals. Moreover, mutant Htt expressing microglia exhibit an increased capacity to induce neuronal death ex vivo and in vivo in the presence of sterile inflammation. These findings suggest that expression of mutant Htt in microglia may contribute to neuronal pathology in Huntingtin disease. RNA-Seq and ChIP-Seq for PU.1, C/EBP, and H3K4me2 in BV2 cells and RNA-Seq in primary microglia and macrophages
Project description:Microglia, the brain-resident macrophages, exhibit highly dynamic functions in neurodevelopment and neurodegeneration. Human microglia possess unique features as compared to mouse microglia, but our understanding of human microglial functions is largely limited by an inability to obtain human microglia under resting, homeostatic states. We developed a human pluripotent stem cell (hPSC)-based microglial chimeric mouse brain model by transplanting hPSC-derived primitive macrophage precursors into neonatal mouse brains. The engrafted human microglia widely disperse in the brain and replace mouse microglia in corpus callosum at 6 months post-transplantation. Single-cell RNA-sequencing of the hPSC microglial chimeric mouse brains reveals that xenografted hPSC-derived microglia largely retain human microglial identity, as they exhibit signature gene expression patterns consistent with physiological human microglia and recapitulate heterogeneity of adult human microglia. Importantly, the chimeric mouse brain also models species-specific transcriptomic differences in the expression of neurological disease-risk genes in microglia. This model will serve as a novel tool to study the role of human microglia in brain development and degeneration.
Project description:Multiple studies have suggested that stress induces neuroinflammation and contributes to emotion-related behavioral deficits. To study epigenetic changes in microglia after chronic stress, we purified microglia from mouse brain after exposure to chronic unexpected mild stress (CUMS), and then performed RNA-seq and ATAC-seq to study microglia-specific alterations of transcriptome and chromatin accessibility in response to chronic stress.