Project description:Recent functional genomics and genome-scale modeling approaches indicated that B12 production in Lactobacillus reuteri could be improved by medium optimization. Here we show that a series of systematic single amino acid omissions could significantly modulate the production of B12 from nearly undetectable levels (by isoleucine omission) to 20-fold higher than previously reported through omission of cysteine. We analyzed by cDNA microarray experiments the transcriptional response of L. reuteri to the medium lacking cysteine. These results supported the observed high B12 production and provided new avenues for future improvement of production of vitamin B12. Keywords: cell type comparison loop design
Project description:The two C. elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in adult day 1 animals, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions.
Project description:Recent functional genomics and genome-scale modeling approaches indicated that B12 production in Lactobacillus reuteri could be improved by medium optimization. Here we show that a series of systematic single amino acid omissions could significantly modulate the production of B12 from nearly undetectable levels (by isoleucine omission) to 20-fold higher than previously reported through omission of cysteine. We analyzed by cDNA microarray experiments the transcriptional response of L. reuteri to the medium lacking cysteine. These results supported the observed high B12 production and provided new avenues for future improvement of production of vitamin B12. Keywords: cell type comparison
2008-10-31 | GSE13391 | GEO
Project description:Lactobacillus strains for vitamin B12 producing
Project description:Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as “B12-mechanism-I”. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as “B12-mechanism-II”. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.
Project description:Vitamin B12 is an essential micronutrient that functions in two metabolic pathways: the canonical propionate breakdown pathway and the methionine/S-adenosylmethionine (Met/SAM) cycle. In Caenorhabditis elegans, low vitamin B12, or genetic perturbation of the canonical propionate breakdown pathway results in propionate accumulation and the transcriptional activation of a propionate shunt pathway. This propionate-dependent mechanism requires nhr-10 and is referred to as “B12-mechanism-I”. Here, we report that vitamin B12 represses the expression of Met/SAM cycle genes by a propionate-independent mechanism we refer to as “B12-mechanism-II”. This mechanism is activated by perturbations in the Met/SAM cycle, genetically or due to low dietary vitamin B12. B12-mechanism-II requires nhr-114 to activate Met/SAM cycle gene expression, the vitamin B12 transporter, pmp-5, and adjust influx and efflux of the cycle by activating msra-1 and repressing cbs-1, respectively. Taken together, Met/SAM cycle activity is sensed and transcriptionally adjusted to be in a tight metabolic regime.
Project description:Vitamin B12 (B12) deficiency is a critical problem worldwide. Such deficiency in infants has long been known to increase the propensity to develop obesity and diabetes later in life through unclear mechanisms. Here, we establish a ∆nhr-114 animal as a Caenorhabditis elegans model to study how early-life B12 impacts adult health. We find that early-life B12 deficiency causes increased lipogenesis and lipid peroxidation in adult worms, which in turn induces germline defects through ferroptosis. In order to further identify genes that respond to early-life B12, we carried out an RNA sequencing (RNA-seq) assay to analyze the gene expression profiles of WT and ∆nhr-114 animals maternally supplied with 8 μM B12 or not.
Project description:Vitamin B12 (cobalamin) is the most complex vitamin and essential for many human gut microbes. However, cobalamin is synthesized only by a limited number of bacteria, making many gut microbes dependent on scavenging to meet their cobalamin requirements. Since bacterial densities in the gut are extremely high, competition for cobalamin is severe, making it a keystone micronutrient that shapes human gut microbial communities. Contrasting with Enterobacteria like Escherichia coli which only have one outer membrane (OM) transporter dedicated to B12 uptake (BtuB), members of the dominant genus Bacteroides often encode several vitamin B12 OM transporters together with a conserved array of surface-exposed B12-binding lipoproteins. Here we show, via X-ray crystallography, cryogenic electron microscopy (cryoEM) and molecular dynamics (MD) simulations, that the BtuB1 and BtuB2 transporters from the prominent human gut bacterium Bacteroides thetaiotaomicron form stable complexes with the surface-exposed lipoproteins BtuG1 and BtuG2. The lipoproteins cap the external surface of their cognate BtuB transporter and, when open, capture B12 via electrostatic attraction. After B12 capture, the BtuG lid closes, with concomitant transfer of the vitamin to the BtuB transporter and subsequent transport. We propose that TonB-dependent, lipoprotein-assisted small molecule uptake is a general feature of Bacteroides spp. that is important for the success of this genus in colonising the human gut.
Project description:Vitamin B12 (B12) is an important cofactor in mycobacterial metabolism, and some pathogenic mycobacteria need to obtain it from the host. In this study, we investigated the transport of vitamin B12 in Mycobacterium marinum. We identified a transcriptor regulator that could be potentially involved in the uptake process. RNA sequencing analysis were performed in order to elucidate the regulon of this new transcriptor.