Project description:Transcription profiling of P. gingivalis W50 grown in continuous culture under conditions of heme-excess and heme-limitation. Reference design (using Cy5 labelled genomic DNA as the reference) to compare two conditions: heme-excess vs heme-limitation. Three samples for each condition, independently grown.
Project description:Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analysed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified with 108 and 49 proteins significantly changing in abundance more than 1.5-fold (p<0.05) in the WCLs and OMVs respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme while the four proteins most upregulated in the heme excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed on to OMVs, however 16 proteins were preferentially packaged into OMVs in one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.
Project description:Human primary aortic smooth muscle cells were infected with wild type (W50, 381), W50 derived gingipain mutants (E8 and K1A), or 381 derived fimbriae mutants (DPG3 and KRX178) strains of Porphyromonas gingivalis for 24 hours. The RNA was extracted from the cells and human whole genome microarray were used to measure gene expression.
Project description:Porphyromonas gingivalis is a major pathogen associated with the microbial biofilm-mediated disease chronic periodontitis. P. gingivalis has an obligate requirement for iron and protoporphyrin IX which it satisfies by transporting heme and iron liberated from the human host. The level of cellular iron in P. gingivalis affects the expression of a distinct iron-associated regulon of 64 genes and low iron invokes an iron sparing response. Iron homeostasis is usually mediated in Gram-negative bacteria at the transcriptional level by the Ferric Uptake Regulator (Fur). There is a single predicted P. gingivalis Fur superfamily orthologue named Har (heme associated regulator) that lacks the conserved metal binding residues found in other Fur orthologues. We show that Har binds both heme and ferrous iron resulting in a conformational change in the protein. Har was unable to complement the Escherichia coli H1780 fur mutant and there was no change in cellular metal content in a P. gingivalis Har mutant compared with the wild-type. The Har regulon of 44 genes is not predicted to play a role in iron homeostasis. Together these data indicated that Har does not regulate iron homeostasis in P. gingivalis. However, Har was required for heme-responsive biofilm development and its regulon overlapped P. gingivalis regulons previously identified after growth in heme limitation or as a homotypic biofilm. P. gingivalis is unique as an iron-dependent Gram-negative bacterium with a single heme-binding Fur superfamily orthologue, Har, that does not regulate iron homeostasis.
Project description:Porphyromonas gingivalis is a major pathogen associated with the microbial biofilm-mediated disease chronic periodontitis. P. gingivalis has an obligate requirement for iron and protoporphyrin IX which it satisfies by transporting heme and iron liberated from the human host. The level of cellular iron in P. gingivalis affects the expression of a distinct iron-associated regulon of 64 genes and low iron invokes an iron sparing response. Iron homeostasis is usually mediated in Gram-negative bacteria at the transcriptional level by the Ferric Uptake Regulator (Fur). There is a single predicted P. gingivalis Fur superfamily orthologue named Har (heme associated regulator) that lacks the conserved metal binding residues found in other Fur orthologues. We show that Har binds both heme and ferrous iron resulting in a conformational change in the protein. Har was unable to complement the Escherichia coli H1780 fur mutant and there was no change in cellular metal content in a P. gingivalis Har mutant compared with the wild-type. The Har regulon of 44 genes is not predicted to play a role in iron homeostasis. Together these data indicated that Har does not regulate iron homeostasis in P. gingivalis. However, Har was required for heme-responsive biofilm development and its regulon overlapped P. gingivalis regulons previously identified after growth in heme limitation or as a homotypic biofilm. P. gingivalis is unique as an iron-dependent Gram-negative bacterium with a single heme-binding Fur superfamily orthologue, Har, that does not regulate iron homeostasis. Paired samples were compared on the same microarray using a two-colour system. A total of 6 paired microarray hybridizations were performed representing 6 biological replicates, where a balanced dye design was used, with the overall analysis including three microarrays where P. gingivalis 33277 samples were labeled with Cy3 and the paired ECR455 samples were labeled with Cy5 and three other microarrays where samples were labeled with the opposite combination of fluorophores.