Project description:Transcriptional changes in field-grown plants of Vitis Vinifera cultivars 'Chardonnay' and 'Incrocio Manzoni' naturally infected with Bois Noir phytoplasma, compared to healthy samples. SUBMITTER_CITATION: Albertazzi G., Caffagni A., Milc J.A., Francia E., Roncaglia E., Ferrari F., Tagliafico E., Stefani E., Pecchioni N. (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science 176: 792-804. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Nicola Pecchioni. The equivalent experiment is VV14 at PLEXdb.] Experiment Overall Design: genotype: Chardonnay - disease type: Bois Noir infected(3-replications); genotype: Chardonnay - disease type: Healthy(3-replications); genotype: Incrocio Manzoni - disease type: Bois Noir infected(2-replications); genotype: Incrocio Manzoni - disease type: Healthy(2-replications)
Project description:Transcriptional profiling of Vitis vinifera cv. Chardonnay healthy vs. Phytoplasma-infected plants (Bois noir phytoplasma). Study was conducted on grapevine plants grown in the same vineyard (leaf midribs were sampled). Keywords: disease state analysis
Project description:Several systemic diseases affect Vitis vinifera worldwide with important consequent management costs. Phytoplasma and viruses represent the most detrimental pathogens inducing symptoms and metabolic alterations that modify quantitatively the crop production. In the aim to investigate the plant/pathogen interactions, different grapevine samples, naturally affected (in mixed or single infections) by Stolbur phytoplasma (agent of Bois Noir disease) and viruses, in comparison to healthy and recovered controls, to identify the plant response to systemic pathogen infection. The preliminary results showed that expression levels of thousands of genes were altered in infected plants, involving various metabolic pathways.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:We have carried out a global transcriptional analysis of grapevine resistance induced by Trichoderma harzianum T39 against Plasmopara viticola using high-throughput Illumina sequencing technology. Four samples were analyzed: control (C), T39-treated (T39), P. viticola-inoculated control (C+P.v.) and P. viticola-inoculated T39-treated (T39 P.v.) plants. Three biological replicates (named A, B and C) were analyzed for each sample and sequenced twice (named 1 and 2). Reads were aligned to the Pinot Noir ENTAV 115 genome and then analyzed to measure gene expression levels. Differentially expressed genes have been identified by statistical analysis.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.