Project description:Hemoglobin (Hb) in the subarachnoid space significantly impacts cerebral vessels, leading to various pathological outcomes. The toxicity of cell-free Hb released from erythrocytes and its metabolites is suggested to cause vasoconstriction and neuronal damage, correlating with delayed ischemic neurological deficits (DIND). Here, we aim to describe the changes in the genetic profile of human cerebral arteries exposed to free Hb for 48 hours. We performed an ex vivo treatment followed by mRNA sequencing of the vessels
Project description:Using data-independent acquisition-based mass spectrometry analysis, we determined the protein changes in cerebral arteries in pre- and early-onset hypertension from the spontaneously hypertensive rat (SHR), a model that resembles essential hypertension. Our analysis identified 125 proteins with expression levels that were significantly up- or downregulated in 12-week old SHRs compared to normotensive Wistar Kyoto rats. Using an angiogenesis enrichment analysis, we identified a critical imbalance in angiogenic proteins, promoting an anti-angiogenic profile in cerebral arteries at the early-onset of hypertension. In a comparison to previously published data, we demonstrate that this angiogenic imbalance is not present in mesenteric and renal arteries from age-matched SHRs. Finally, we identified two proteins (Fbln5 and Cdh13), whose expression levels were critically altered in cerebral arteries compared to the other arterial beds. The observation of an angiogenic imbalance in cerebral arteries from the SHR reveals critical protein changes in the cerebrovasculature at the early-onset of hypertension and provides novel insight into the early pathology of cerebrovascular disease.
Project description:The Dahl salt-sensitive (S) rat model develops chronic hypertensive disease when fed a high salt diet that ultimately results in renal and heart failure, as well as prevalent cerebrovascular pathologies. Phenotypic changes in the cerebral vasculature are preceded by changes in gene expression, and evidence supports a role for extracellular signal-regulated kinase 1/2 (ERK1/2) in vascular cell proliferation, yet little is known regarding ERK1/2 âregulated gene transcription in cerebrovascular smooth muscle during hypertension. Findings presented here support the hypothesis that salt-induced hypertensive disease results in upregulation of ERK1/2 activity and ERK1/2-regulated genes that promote remodeling in cerebral resistance arteries. Dahl S rats were fed either a 0.4% NaCl (low salt, LS) or 8% NaCl (high salt, HS) diet until evidence of left ventricular dysfunction. Gene expression profiling using oligonucleotide array analysis detected a significant fold-change of 1.5 or greater in 133 out of 15,923 genes examined. Mitogen-activated protein kinase (MAPK)-regulated genes were overrepresented and provided a link to genes involved in proliferation and extracellular matrix signaling including plasminogen activator inhibitor I (PAI-1), osteopontin (OPN) and junB. These data suggests that salt induced hypertensive disease promotes hyperplasia and changes in matricellular genes that are likely important in vascular remodeling. Experiment Overall Design: Analysis was based on a comparison between the Low Salt and High Salt groups. Arteries from 3 animals were pooled for each sample, thus there were 9 animals/group. Analysis of significance amongst all genes as well as prospective hypotheses correlating to disease were performed.
Project description:The Dahl salt-sensitive (S) rat model develops chronic hypertensive disease when fed a high salt diet that ultimately results in renal and heart failure, as well as prevalent cerebrovascular pathologies. Phenotypic changes in the cerebral vasculature are preceded by changes in gene expression, and evidence supports a role for extracellular signal-regulated kinase 1/2 (ERK1/2) in vascular cell proliferation, yet little is known regarding ERK1/2 –regulated gene transcription in cerebrovascular smooth muscle during hypertension. Findings presented here support the hypothesis that salt-induced hypertensive disease results in upregulation of ERK1/2 activity and ERK1/2-regulated genes that promote remodeling in cerebral resistance arteries. Dahl S rats were fed either a 0.4% NaCl (low salt, LS) or 8% NaCl (high salt, HS) diet until evidence of left ventricular dysfunction. Gene expression profiling using oligonucleotide array analysis detected a significant fold-change of 1.5 or greater in 133 out of 15,923 genes examined. Mitogen-activated protein kinase (MAPK)-regulated genes were overrepresented and provided a link to genes involved in proliferation and extracellular matrix signaling including plasminogen activator inhibitor I (PAI-1), osteopontin (OPN) and junB. These data suggests that salt induced hypertensive disease promotes hyperplasia and changes in matricellular genes that are likely important in vascular remodeling. Keywords: Normotensive vs. Hypertensive Disease
Project description:We conducted proteome analysis of basilar (cerebral) arteries from three control baboon fetuses and four fetuses that were exposed to alcohol in utero. Three alcohol-exposure episodes took place during second trimester-equivalent of human pregnancy, while fetal arteries were harvested during cesarean sections performed near-term. Supernatants from whole artery lysates were processed for TMT-labeling, fractionated, and subjected to LC/MS analysis.
Project description:The Alpha Adrenergic Signaling Pathway is one of the chief regulators of cerebrovascular tone and cerebral blood flow (CBF), mediating its effects in the arteries through alpha1-adrenergic receptors (Alpha1AR). In the ovine middle cerebral artery (MCA), with development from a fetus to an adult, others and we have shown that Alpha1AR play a key role in contractile responses, vascular development, remodeling, and angiogenesis. Importantly, Alpha1AR play a significant role in CBF autoregulation, which is incompletely developed in a premature fetus as compared to a near-term fetus. However, the mechanistic pathways are not completely known. Thus, we tested the hypothesis that as a function of maturation and in response to Alpha1AR stimulation there is a differential gene expression in the ovine MCA. We conducted microarray analysis on transcripts from MCAs of premature fetuses (96-day), near-term fetuses (145-day), newborn lambs, and non-pregnant adult sheep (2-year) following stimulation of Alpha1AR with phenylephrine (a specific agonist). We observed several genes which belonged to pro-inflammatory and vascular development/angiogenesis pathway significantly altered in all of the four age groups. We also observed age-specific changes in gene expression–mediated by Alpha1AR stimulation in the different developmental age groups. These findings imply complex regulatory mechanisms of cerebrovascular development.