Project description:This SuperSeries is composed of the following subset Series:; GSE12091: Profiling gene expression in HeLa cells by hsa-mir-26b overexpression; GSE12092: Profiling gene expression in HeLa cells by hsa-mir-98 overexpression Experiment Overall Design: Refer to individual Series
Project description:Total RNA samples from three biological replicates in which the hsa-mir-26b was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67 Experiment Overall Design: hsa-miR-26b transfection
Project description:Annexin 1 (ANXA1), an endogenous anti-inflammatory protein which modulates cellular processes such as proliferation, differentiation and apoptosis has been implicated in cancer initiation and progression. ANXA1 was previously shown to be regulated by hsa-miR-196a and promoted cell proliferation and anchorarge-dependent growth and suppressed apoptosis. However, whether ANXA1 itself regulates miRNA expression is unknown. Therefore, in this study, we investigated the regulation of miRNA by ANXA1 in breast cancer cells. Using microarray technology, 12 miRNAs were found to be significantly and consistently downregulated in MCF-7 cells (MCF-V5) overexpressing ANXA1 overexpressing MCF-7 cells (MCF-V5). Hsa-miR-26b* and hsa-miR-562 were chosen for further investigation.The data suggest that miR-26b* and miR-562 may play a role in ANXA1-induced migration and possibly angiogenesis by targeting NFKB and point towards a potential therapeutic target for breast cancer.
Project description:Total RNA samples from three biological replicates in which the hsa-mir-98 was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67 Experiment Overall Design: hsa-miR-98 transfection
Project description:Annexin 1 (ANXA1), an endogenous anti-inflammatory protein which modulates cellular processes such as proliferation, differentiation and apoptosis has been implicated in cancer initiation and progression. ANXA1 was previously shown to be regulated by hsa-miR-196a and promoted cell proliferation and anchorarge-dependent growth and suppressed apoptosis. However, whether ANXA1 itself regulates miRNA expression is unknown. Therefore, in this study, we investigated the regulation of miRNA by ANXA1 in breast cancer cells. Using microarray technology, 12 miRNAs were found to be significantly and consistently downregulated in MCF-7 cells (MCF-V5) overexpressing ANXA1 overexpressing MCF-7 cells (MCF-V5). Hsa-miR-26b* and hsa-miR-562 were chosen for further investigation.The data suggest that miR-26b* and miR-562 may play a role in ANXA1-induced migration and possibly angiogenesis by targeting NFKB and point towards a potential therapeutic target for breast cancer. Breast cancer MCF-7 cells (MCF-V5) overexpressing ANXA1 were cultured for RNA extraction and hybridization on Affymetrix miRNA microarrays. These were compared against the control, which were MCF-7 cells (MCF-EV) carrying an empty expression vector. Expression analyses were carried out in triplicates
Project description:microRNA regulates cellular responses to ionizing radiation (IR) through the translational control of target genes. We analyzed time-series changes in microRNA expressions upon γ-irradiation in H1299 lung cancer cell lines using microarray. Significantly changed microRNAs were selected based on ANOVA analysis, target genes of which were enriched to MAPK signaling pathway. Concurrent analysis of mRNA and microRNA uncovered that the expression of miR-26b and its target ATF2 mRNA were inversely correlated in γ-irradiated H1299 cells. The overexpression of miR-26b induced the suppression of ATF2 in γ-irradiated cells. When we inhibit the MAPK signaling pathway using SP600125, JNK inhibitor, the expression of miR-26b was induced even in γ-irradiated H1299 cells. From these results, we concluded that the expression of miR-26b was coordinated regulated by MAPK signaling pathway upon ionizing radiation, and MAPK signaling pathway was regulated by miR-26b in turn.
Project description:Total RNA samples from three biological replicates in which the hsa-mir-26b was overexpressed in HeLa cells were profiled by gene expression. As negative control, we used total RNA samples from HeLa cells transfected with cel-mir-67 Keywords: gene expression array-based (RNA / in situ oligonucleotide)
Project description:Using the highly sensitive miRNA array, we screened 220 microRNAs abundant in physiological left ventricular hypertrophy (LVH) and we explored the functions of these miRNAs in the cardiac tissue by Gene Ontology and Kyoto Encyclopedia of Genes annotation. miRNAs showed a high score in the pathway enriched in autophagy. Moreover, the expression levels of miR-26b-5p, miR-204-5p, and miR-497-3p showed an obvious increase in rat hearts. Adenovirus-mediated overexpression of miR-26b-5p, miR-204-5p, and miR-497-3p markedly attenuated IGF-1-induced hypertrophy in H9C2 cells by suppressing autophagy. Furthermore, miR-26b-5p, miR-204-5p, and miR-497-3p attenuated autophagy in H9C2 cells through targeting ULK1, LC3B and Beclin 1, respectively. Taken together, our results demonstrate that swimming exercise induced physiological LVH, at least in part, by modulating the microRNA–autophagy axis, and that miR-26b-5p, miR-204-5p, and miR-497-3p may help distinguish physiological and pathological LVH.