Project description:Anthocyanins are specialized plant metabolites with significant dietary value due to their antioxidant and anti-inflammatory properties. Extensive research has indicated that dietary intake of these phenolic compounds contributes to preventing various chronic diseases. Consequently, incorporating anthocyanin-rich foods into one's diet, particularly from natural sources, is highly beneficial. The tomato (Solanum lycopersicum) is the most consumed vegetable worldwide, making it an excellent candidate for anthocyanin-enrichment strategies. The activation of anthocyanin biosynthesis is light-dependent in tomato, but this mechanism has not been entirely characterized. In this study, a purple tomato line in the cv. Micro-Tom (MT-Aft/atv/hp2) was utilized to investigate cyanic fruits developed under varying light conditions. This genotype is derived from natural genetic variation and exhibits anthocyanin accumulation starting early in fruit development. Transcriptional analyses of the fruit peel (exocarp or epicarp) and flesh (mesocarp) revealed that the bHLH transcription factor SlAN1 (Solyc09g065100) is the limiting factor for anthocyanin accumulation in both tissues. In this genotype, the absence of anthocyanin accumulation in the flesh results from the sun-blocking effect of the cyanic epicarp on the mesocarp, preventing light from penetrating deeper into the fruit during its development. This research enhances our comprehension of the genetic and environmental regulation of anthocyanin accumulation in fruit tissues, offering valuable insights for plant breeding and human nutrition.
Project description:Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacleM-^Rs surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution.
Project description:To functionally characterise flesh pigmentation pattern, we performed transcriptomic comparisons between RF and WF mesocarps. The transition step between fully red fruits and heterogeneously pigmented fruit were targeted during fruit development (84 Days After Full Bloom - DAFB).
Project description:To functionally characterise flesh pigmentation pattern, we performed methylation analysis between RF and WF mesocarps. The transition step between fully red fruits and heterogeneously pigmented fruit were targeted during fruit development (84 Days After Full Bloom - DAFB).
Project description:The quality of the pepper fruit is significantly influenced by the properties of its surface such as color, glossiness and texture. The fruit surface is composed of a peel containing several layers including the cuticle, epidermis and the hypodermis. The peel acts as a protective barrier against biotic and abiotic stresses and is the most critical tissue affecting water loss during post harvest storage. The peel is composed of an outer epidermis with thick waxy (lipid) cuticle and few cell layers of thick-walled hypodermal cells. Despite its agronomic importance and due to the fact that the majority of studies in fruits have been conducted using flesh and peel tissues as a whole, the biochemical and genetic bases of variation in peel properties are largely unknown. In this proposal we aim to determine peel-specific gene expression in pepper by micro array hybridizations of peel and flesh RNA extracted at different developmental stages of the fruit. The cultivar Celica (Capsicum annuum) that has a large blocky fruit will be used for studying gene expression in the peel and flesh. Plants were grown in the greenhouse during the spring of 2006. Fruits were harvested at three developmental stages: young- 10 days after anthesis, mature green- 30 days after anthesis and ripe red- 45 days after anthesis. These stages were chosen because each represents a distinct phase in fruit development. At each stage, a biological replicate consists of bulked tissue from 3 fruits from each of 3 plants (a total of 9 fruits). We have a total of 4 biological replicates. For each fruit, the peel was separated from the flesh by manual dissection using thin forceps and scalpel blade. Peel and flesh samples were immediately frozen in liquid nitrogen and stored at -800C until RNA extraction. Total RNA was extracted using the GenElute Mammalian Total RNA Miniprep kit (Sigma). Keywords: Reference design
Project description:Global analysis of gene expression during development and ripening of citrus fruit flesh. Samples taken from fruit development phases I,II and III (Bain JM, 1958, Aust J Bot, 6: 1-24 ) were compared
Project description:The quality of the pepper fruit is significantly influenced by the properties of its surface such as color, glossiness and texture. The fruit surface is composed of a peel containing several layers including the cuticle, epidermis and the hypodermis. The peel acts as a protective barrier against biotic and abiotic stresses and is the most critical tissue affecting water loss during post harvest storage. The peel is composed of an outer epidermis with thick waxy (lipid) cuticle and few cell layers of thick-walled hypodermal cells. Despite its agronomic importance and due to the fact that the majority of studies in fruits have been conducted using flesh and peel tissues as a whole, the biochemical and genetic bases of variation in peel properties are largely unknown. In this proposal we aim to determine peel-specific gene expression in pepper by micro array hybridizations of peel and flesh RNA extracted at different developmental stages of the fruit. The cultivar Celica (Capsicum annuum) that has a large blocky fruit will be used for studying gene expression in the peel and flesh. Plants were grown in the greenhouse during the spring of 2006. Fruits were harvested at three developmental stages: young- 10 days after anthesis, mature green- 30 days after anthesis and ripe red- 45 days after anthesis. These stages were chosen because each represents a distinct phase in fruit development. At each stage, a biological replicate consists of bulked tissue from 3 fruits from each of 3 plants (a total of 9 fruits). We have a total of 4 biological replicates. For each fruit, the peel was separated from the flesh by manual dissection using thin forceps and scalpel blade. Peel and flesh samples were immediately frozen in liquid nitrogen and stored at -800C until RNA extraction. Total RNA was extracted using the GenElute Mammalian Total RNA Miniprep kit (Sigma). Keywords: Reference design 12 hybs total
Project description:Microarray analysis was used to compare the gene expression profiles of red and purple sectors of VIGS (Virus-induced gene silencing)-treated Del/Ros1 fruit in the MoneyMaker background. Fruit were silenced at the mature green stage and harvested at differing number of days after breaker.