Project description:Bacterial 16S V4 rDNA was amplified using two differently barcoded V4 fusion primers. Pooled PCR samples were purified and paired-end sequenced on MiSeq instrument for 250 cycles. The steps from DNA quantification to sequencing were conducted at Second Genome Inc.
| EGAD00001005482 | EGA
Project description:The original data of bacterial precipitation samples
Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:The relationship between the microbial changes with clinical-pathological outcomes are still far from being conclusive. Herein, we investigate the ability of metagenomics (MG) and metaproteomics (MP) saliva data in distinguishing C, L0 and L1 patients. For that, we combined two strategies using MG analysis using 16S rDNA sequencing of saliva cells, and MP analysis using liquid chromatography tandem mass spectrometry of saliva supernatant and cells.
Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.