Project description:To explore TNF-related genes in GPI-induced arthritis, we performed GeneChip analysis using arthritic splenocytes and control-immunized splenocytes. Among the arrayed TNFalpha-related genes, TIARP mRNA was highly expressed in arthritic splenocytes, with levels exceeding more than 20-times the control splenocytes
Project description:The target proteins phosphoglycerate kinase 2 (PGK2), glycerol-3-phosphate dehydrogenase (GPD2)GPD2 and glucose-6-phosphate isomerase (GPI) were screened by combining transcriptome, proteomics and reverse docking We detected the binding constant of the active compound using microscale thermophoresis (MST). It was found that esculetin bound well with three potential target proteins.
Project description:To explore TNF-related genes in GPI-induced arthritis, we performed GeneChip analysis using arthritic splenocytes and control-immunized splenocytes. Among the arrayed TNFalpha-related genes, TIARP mRNA was highly expressed in arthritic splenocytes, with levels exceeding more than 20-times the control splenocytes The spleens of three GPI-GST (MW=89 kD) (300 µg) -immunized DBA/1 mice were harvested on day 10. As a control, the spleens of three GST (MW=26 kd) (100 µg) -immunized DBA/1 mice were used. Total RNA was extracted from the splenocytes using Isogen (Nippon gene), then 15 ug of RNA was utilized for cDNA synthesis by reverse transcription followed by synthesis of biotinylated cRNA through in vitro transcription. After cRNA fragmentation, hybridization with mouse 430A2.0 GeneChip (Affymetrix, Santa Clara, CA) with probes for 43,000 mouse genes ESTs was performed according to the protocol provided by the manufacturer. Analysis was performed by gene expression software
Project description:In this study we explore the genomic re-wiring of a human colon cancer cell line (LS174T) in which fermentative glycolysis has been fully suppressed by CRISPR/Cas9 to disrupt glucose-6-phosphate isomerase (GPI-KO) or dual disruption of lactate dehydrogenases A and B (LDHAB-DKO). The effects of both KOs, had no effect on loss of viable cell function, corresponding to high concentrations of ATP production vs WT. All three clones were evaluated for transcriptomic changes using GeneChip™ Human Gene 2.1 ST Arrays by Affymetrix Inc assessing for mRNAs and long intergenic non-coding RNA transcripts.
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:We used RNA-seq to profile E. coli K-12 MG1655 strains subjected to adaptive laboratory evolution after knockout of endogenous glucose-6-phosphate isomerase (pgi) and subsequent expression of heterologous version of the pgi gene from Pseudomonas aeruginosa and Bacillus megaterium.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Glycolysis can improve the tolerance of tissue cells to hypoxia, and its intermediates provide raw materials for the synthesis and metabolism of the tumor cells. If it can inhibit the activity of glycolysis-related enzymes and control the energy metabolism of tumor, it can be targeted for the treatment of malignant tumor. The target proteins phosphoglycerate kinase 2 (PGK2), glycerol-3-phosphate dehydrogenase (GPD2) and glucose-6-phosphate isomerase (GPI) were screened by combining transcriptome, proteomics and reverse docking. We detected the binding constant of the active compound using microscale thermophoresis (MST). It was found that esculetin bound well with three potential target proteins. Esculetin significantly inhibited the rate of glycolysis, manifested by differences of cellular lactate production and glucose consumption in HepG2 cells with or without esculetin. It was found that GPD2 bound strongly to GPI, revealing the direct interaction between the two glycolysis-related proteins. Animal tests have further demonstrated that esculetin may have anticancer effects by affecting the activity of PGK2, GPD2 and GPI. The results of this study demonstrated that esculetin can affect the glucose metabolism by binding to glycolytic proteins, thus playing an anti-tumor role, and these proteins which have direct interactions are potential novel targets for tumor treatment by esculetin.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Gene expression profile at single cell level of CD4+ T cells from the lymph nodes of young and old DBA/1 mice with or without glucose-6-phosphate isomerase (GPI)-induced arthritis (GIA)