Project description:Extensive annual losses of honey bees (Apis mellifera L.) represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor in association with viral co-infections plays a key role in this phenomenon; however, the precise mechanisms are still unclear. We employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to elucidate the effects of Varroa parasitisation. We focused on complex differences between parasitised and unparasitised ten-days old honey bee workers collected from identical colonies before overwintering. Honey bees exposed to mite parasitation during their development revealed alterations in transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids and RNA regulatory mechanisms. Specifically, immune reactions and sphingolipids metabolism were strongly up-regulated in parasitised honey bees; whereas olfactory recognition and oxidative stress pathways were down-regulated compared to unparasitised bees. Additionally, the metabolomic analysis confirmed the depletion of nutrients, decreased energy stores and generally disrupted metabolism of parasitised workers, as previously reported. By virtue of comprehensive omics-based analysis, we define the key changes in the honey bee facing Varroa parasitism and suggest possible mechanisms underlying its detrimental effects. This study provides a theoretical basis for future efforts in efficient control strategies against Varroa mites.
Project description:In this study we addressed whether the transcriptome profile in the honey bee brain is similar for two major parasites of honey bee, Varroa destructor and Nosema ceranae. Honey bees parasitized by these two parasites show accelerated behavioral maturation and deficiences in orientation and learning/memory that we hoped to characterized at the transcriptomic level. honey bee adults infested by Varroa destructor or Nosema ceranae compared to control bees, in duplicate
Project description:In this study we addressed whether the transcriptome profile in the honey bee brain is similar for two major parasites of honey bee, Varroa destructor and Nosema ceranae. Honey bees parasitized by these two parasites show accelerated behavioral maturation and deficiences in orientation and learning/memory that we hoped to characterized at the transcriptomic level.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on global gene expression using microarray transcriptional profiling in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on on siRNA and miRNA composition using high-throughput sequencing of small RNA in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:Background The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and the ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. Results We sequenced the genome and transcriptomes of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia. The de novo assembled genome sequence (353 Mb) represents 53% of the estimated genome size because of the compression of repetitive sequences; nevertheless, we predicted 15,190 protein-coding genes which were well supported by the mite transcriptomes and proteomic dataes. Although amino acid substitutions have been accelerated within the conserved core genes in of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced; meanwhile, T. mercedesae may have evolved a specialized cuticle and water homeostasis mechanisms, as well as epigenetic control of gene expression for ploidy compensation between males and females., and water homeostasis. T. mercedesae contains all gene sets required to detoxify xenobiotics, enabling it to be miticide resistant. T. mercedesae is closely associated with a symbiotic bacteriuma (Rickettsiella grylli-like) and DWVdeformed wing virus (DWV), the most prevalent honey bee virus. The presence of DWV in both adult male and female mites was also confirmed by the proteomic analysis. Conclusions T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly dependsing on the honey bee inside the a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites and tick has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. T. mercedesae, as well as Varroa destructor, genome and transcriptome sequences not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee.
Project description:The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.
Project description:The Varroa mite represents the main threat of honey bees (Apis mellifera). Bees from some colonies can limit the proliferation of this parasite by detecting and removing parasitized brood, such behavior is defined as Varroa sensitive Hygiene (VSH). This is an important issue for selecting colonies that can survive Varroa outbreaks. We therefore study the molecular meachnisms underlying this behavior by comparing the antennae transcriptomic profile of VSH and non-VSH bees. Those profiles were further compared to to the profiles of nurses and forager profiles involved in brood care and food collection, respectively.
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:Varroa destructor is one of the major parasitic pests in modern beekeeping worldwide. Since it shifted host from Asian to Western honey bees, it was shown to weaken colonies by feeding on both immature and adult stages while transmitting several deadly viruses in the process. Nutrition, an overlooked aspect of parasite biology, is thus a key to comprehend the V. destructor life cycle and its impacts on its honey bee host. We explored the feeding physiology of this ectoparasite both through artificial feeding and by dissecting their gut and analysing their protein content especially in terms of host-derived nutrients. We found that the mite requires higher quantities of carbohydrates than proteins and that the nature of these proteins is crucial for its survival. The abundance of these essential nutrients such as Vitellogenin or Hexamerin varies throughout the bee development and could directly impact the parasite physiology. The analysis and identification of key proteins required for the mite’s survival and reproduction will pave the way for the development of more specific control strategies.