Project description:The purpose of this study was to identify leptin target genes and subsequent pathways correlated with leptin-mediated weight loss. We utilized the microarray technology to compare two types of leptin administration: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ) and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV). We report here the impact of central and peripheral administration of leptin on food intake, body weight and body fat composition in ob/ob mice. We also report hepatic gene expression changes caused by central versus peripheral leptin administration. Keywords: comparison Leptin deficient (ob/ob) mice were continuously administered leptin over 12-days using central (intracerebroventricular) or peripheral (subcutaneous) route of administration. Liver RNA was extracted and hybridized to Illumina microarrays and gene expression data was analyzed. The global gene expression profiles were compared after the central and peripheral leptin treatments in ob/ob mice and C57BL6 mice were used for the baseline gene expression.
Project description:The purpose of this study was to identify leptin target genes and subsequent pathways correlated with leptin-mediated weight loss. We utilized the microarray technology to compare two types of leptin administration: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ) and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV). We report here the impact of central and peripheral administration of leptin on food intake, body weight and body fat composition in ob/ob mice. We also report hepatic gene expression changes caused by central versus peripheral leptin administration. Keywords: comparison
Project description:Ob/ob mice were given 0, 12.5 or 25 ng/hr leptin through an osmotic pump. After 12 days, livers RNA was prepared and illumina microarrays were done. We tested whether leptin can ameliorate diabetes independent of weight loss by defining the lowest dose at which leptin treatment of ob/ob mice reduces plasma [glucose] and [insulin]. We found that a leptin dose of 12.5 ng/hour significantly lowers blood glucose and that 25 ng/hour of leptin normalizes plasma glucose and insulin without significantly reducing body weight, thus establishing that leptin exerts its most potent effects on glucose metabolism. To find possible mediators of this effect, we profiled liver mRNA using microarrays and identified IGF Binding Protein 2 as being regulated by leptin with a similarly high potency. Over-expression of IGFBP2 by an adenovirus reversed diabetes in insulin resistant ob/ob, Ay/a and diet-induced obese mice (DIO), as well as insulin deficient streptozotocin-treated mice. Hyperinsulinemic clamp studies showed a three-fold improvement in hepatic insulin sensitivity following IGFBP2 treatment in ob/ob mice. These results show that IGFBP2 can regulate glucose metabolism, a finding with potential implications for the pathogenesis and treatment of diabetes.
Project description:Caloric Restriction in Leptin Deficiency Worsens Myocardial Steatosis: Failure to Upregulate PPAR gamma and Thermogenic Glyecrolipid/Fatty Acid Cycling Growing evidence supports an anti-lipotoxic role for leptin in preventing inappropriate peripheral tissue lipid deposition. Obese, leptin deficient ob/ob mice develop left ventricular (LV) hypertrophy and myocardial steatosis with increased apoptosis and decreased longevity. Here we investigated the cardiac effects of caloric restriction in leptin deficiency. Echocardiography was performed on C57Bl/6 wild-type mice (WT) and 7-month-old ob/ob mice fed ad lib, leptin-repleted (LR-ob/ob), or calorie-restricted (CR-ob/ob) for four weeks. Ventricular tissue was examined by electron microscopy (EM), mitochondrial coupling assay, and microarray expression profiling. LR and CR-ob/ob mice showed decreased body weight, heart weight, and LV wall thickness compared to ad lib ob/ob mice. LV fractional shortening was decreased in ad lib ob/ob mice, but restored to WT levels in LR and CR groups. However, EM revealed severe cardiac steatosis in the CR-ob/ob group compared to only moderate steatosis in ad lib ob/ob . Despite marked cardiac steatosis, CR (like LR) restored mitochondrial coupling to WT levels. CR up-regulated genes associated with oxidative stress and cell death, changes suggestive of cardiac lipotoxicity. LR, but not CR was shown to induce core genes involved in glycerolipid/free fatty acid cycling, a highly thermogenic pathway that can reduce intracellular lipid stores. LR, but not CR up-regulated and restored PGC1 and PPARto wild type levels; CR paradoxically further suppressed cardiac PPAR. Thus, leptin is essential in protecting the heart from lipotoxicity, and the inability to up-regulate the thermogenic glycerolipid/free fatty acid cycling pathway may impair the response of leptin deficient animals to the lipotoxic stress of calorie restriction. 6 month aged ob/ob mice were either leptin repleted with osmotic mini-pumps, calorie restricted to match the caloric intake of the leptin repleted mice, or fed ad lib for one month. 6-8 month C57Bl/6J mice were aged to serve as controls.
Project description:Bariatric surgical techniques are known to cause weight loss and diabetes remission to varying degrees in severly obese patients. However, the mechanisms involved in the restoration of beta-cell function remain to be uncovered. In this study, the leptin-deficient ob/ob mouse was used as a model to investigate the effect of EGA bariactric surgery on pancreatic islet gene expression.
Project description:Bariatric surgical techniques are known to cause weight loss and diabetes remission to varying degrees in severly obese patients. However, the mechanisms involved in the restoration of beta-cell function remain to be uncovered. In this study, the leptin-deficient ob/ob mouse was used as a model to investigate the effect of EGA bariactric surgery on pancreatic islet miRNA expression.
Project description:Caloric Restriction in Leptin Deficiency Worsens Myocardial Steatosis: Failure to Upregulate PPAR gamma and Thermogenic Glyecrolipid/Fatty Acid Cycling Growing evidence supports an anti-lipotoxic role for leptin in preventing inappropriate peripheral tissue lipid deposition. Obese, leptin deficient ob/ob mice develop left ventricular (LV) hypertrophy and myocardial steatosis with increased apoptosis and decreased longevity. Here we investigated the cardiac effects of caloric restriction in leptin deficiency. Echocardiography was performed on C57Bl/6 wild-type mice (WT) and 7-month-old ob/ob mice fed ad lib, leptin-repleted (LR-ob/ob), or calorie-restricted (CR-ob/ob) for four weeks. Ventricular tissue was examined by electron microscopy (EM), mitochondrial coupling assay, and microarray expression profiling. LR and CR-ob/ob mice showed decreased body weight, heart weight, and LV wall thickness compared to ad lib ob/ob mice. LV fractional shortening was decreased in ad lib ob/ob mice, but restored to WT levels in LR and CR groups. However, EM revealed severe cardiac steatosis in the CR-ob/ob group compared to only moderate steatosis in ad lib ob/ob . Despite marked cardiac steatosis, CR (like LR) restored mitochondrial coupling to WT levels. CR up-regulated genes associated with oxidative stress and cell death, changes suggestive of cardiac lipotoxicity. LR, but not CR was shown to induce core genes involved in glycerolipid/free fatty acid cycling, a highly thermogenic pathway that can reduce intracellular lipid stores. LR, but not CR up-regulated and restored PGC1-alpha and PPAR-alpha to wild type levels; CR paradoxically further suppressed cardiac PPAR-alpha. Thus, leptin is essential in protecting the heart from lipotoxicity, and the inability to up-regulate the thermogenic glycerolipid/free fatty acid cycling pathway may impair the response of leptin deficient animals to the lipotoxic stress of calorie restriction.
Project description:Nonalcoholic steatohepatitis (NASH) is an aggressive liver disease threatening public health, however its natural history is poorly understood. Unlike ob/ob mice, Lep∆I14/∆I14 rats develop unique NASH phenotype with an inflection point of inflammation at postnatal week 16. Using Lep∆I14/∆I14 rats, we studied the natural history of NASH progression by performing an integrated analysis of hepatic transcriptome from postnatal week 4 to 48. Leptin deficiency leads to the precipitously increasing expression of genes encoding rate-limiting enzymes in lipid metabolism. However, hepatic inflammation related genes, pathways and immune-cell infiltration are restricted after week 16, implying an essential role of LEPTIN in regulating hepatic inflammation. Lep∆I14/∆I14 rats share more genes with NASH patients than known mouse models, therefore will provide a better genetic platform for studying NASH than mice.
Project description:We examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER) stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice.
Project description:Ob/ob mice are characterized by a defect in leptin synthesis. In this study, the contribution of leptin deficiency to the deregulation of miRNA expression in ob/ob mice was determined by comparing leptin infused ob/ob mice to saline control.