Project description:Compare miRNA expression profiles in epididymal white adipose tissue (WAT), interscapular brown adipose tissue (BAT) and skeletal muscle from wild-type C57BL/6J mice
Project description:The proteome cargo of extracellular vesicles released from brown adipose tissue (BAT) and from white adipose tissue (WAT) of mice subjected to cold exposure (4°C) was analysed by a TMT-based quantitative proteomic procedure in order to obtain new information on the processes of thermogenesis.
Project description:Experiments were designed to compare white adipose tissue (WAT) or brown adipose tissue (BAT) -in male and female mice- between Bscl2 knock-out mice and their wild-type control mice. RNA was pooled to obtain 2x 8µg per tissue source and subjected to dye-swap hybridization.
Project description:To study the gene expression profiles of brown (BAT) and white (WAT) adipose tissues in wild type and LR11-deficeint mice. The four RNA sources, WT scWAT, Lr11 -/- scWAT, WT BAT and Lr11 -/- BAT, were prepared from subcutaneous WAT and BAT from wild-type mice and Lr11 -/- mice, respectively (n=3 each).
Project description:We run microarrays from three per group Sv129 female mice, ten weeks old, which were maintained at 28M-BM-0C (warm conditions) or 6M-BM-0 C (cold stimulated) for ten days, while standard animal house temperature is 22 M-BM-0C. After ten days, three types of tissue were collected: Brown Adipose Tissue (BAT), Mesenteric (visceral) White Adipose Tissue (MES) and Posterior Subcutaneous White Adipose Tissue (WAT) Different adipose tissue depots were taken for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the differences between white and brown adipose tissues at different temperatures
Project description:We run microarrays from three per group Sv129 female mice, ten weeks old, which were maintained at 28°C (warm conditions) or 6° C (cold stimulated) for ten days, while standard animal house temperature is 22 °C. After ten days, three types of tissue were collected: Brown Adipose Tissue (BAT), Mesenteric (visceral) White Adipose Tissue (MES) and Posterior Subcutaneous White Adipose Tissue (WAT)
Project description:We found that the circadian protein PER2 interacts with the nuclear receptor PPARgamma to repress its activity. PPARgamma is a master regulator of adipogenesis and lipid metabolism and is very abundant in adipose tissue. We used microarrays to detail the global program of gene expression in adipose tissue lacking the per2 gene. This analysis identified several PPARgamma target genes up-regulated in adipose tissue from per2-/- mice. Per2-/- and per2+/+ male mice (Bae et al., 2001) were housed under 12 hr light/12 hr dark (LD) cycles. Mice 20 weeks old were sacrificed at the same time and adipose tissue (WAT and BAT) was collected for RNA extraction. 3 biological replicates per mouse/tissue.
Project description:Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared to white adipose tissue (WAT), PVAT and BAT from C57BL/6 mice fed a high fat diet for 13 weeks had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80, CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) in comparison to WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from thermal and inflammatory stress. 8-week-old male C57BL6/J mice were fed a normal (ND) or high fat diet (HFD) (Research Diets 12451, 45 kcal% fat) for 13 weeks. Mice were then euthanized and four different adipose depots were harvested for RNA analysis: perivascular fat from the lesser curvature of the aortic arch (PVAT), interscapular brown adipose (BAT), inguinal adipose tissue (SAT), and epididymal adipose tissue (VAT). 250 ng total RNA pooled from two mice was used for cDNA synthesis; 3 biological replicates per tissue and diet were performed for a total of 24 hybridizations.