Project description:This SuperSeries is composed of the following subset Series: GSE18588: CpG islands recruit a histone H3 lysine 36 demethylase [Illumina sequencing data] GSE21201: CpG islands recruit a histone H3 lysine 36 demethylase [Agilent data] Refer to individual Series
Project description:Eukaryotic gene expression profiles are largely defined by transcription factors that recognize specific DNA sequences in gene regulatory regions and impact RNA polymerase recruitment and transcription. In addition to specific core promoter regulatory elements, up to 70% of genes in higher eukaryotes are also characterized by an overrepresentation of cytosine/guanine base pairs (CpGs) surrounding promoters and gene regulatory units. These features, called CpG islands, were identified over twenty years ago but there remains little mechanistic evidence to suggest how these enigmatic elements contribute to promoter function, with the exception that they are refractory to epigenetic silencing by DNA methylation. Here we uncover a role for CpG islands in buffering gene regulatory elements from repressive histone H3 lysine 36 methylation by directly recruiting the H3K36 specific lysine demethylase enzyme KDM2A. KDM2A is recruited to CpG islands by a zinc finger CxxC (ZF-CxxC) domain that specifically recognizes CpG DNA and is blocked by DNA methylation. This capacity to sense the epigenetic methylation state of DNA constrains KDM2A to non-methylated CpG islands. Importantly, these observations suggest CpG islands may function to delineate gene regulatory elements from bulk chromatin by recruiting factors that create unique chromatin architecture. This study provides information about binding of lysine demethylase enzyme KDM2A in mouse embryonic stem cells.
Project description:CpG islands (CGI) are associated with the majority of mammalian gene promoters and function to recruit chromatin modifying enzymes. It has therefore been proposed that CGIs regulate gene expression through chromatin-based mechanisms, however in most cases this has not been directly tested. Here, we reveal that the histone H3 lysine 36 (H3K36) demethylase activity of the CGI-binding KDM2 proteins contributes only modestly to the H3K36me2-depleted state at CGI-associated gene promoters and is dispensable for normal gene expression. Instead, we discover that KDM2 proteins play a widespread and demethylase-independent role in constraining gene expression from CGI-associated gene promoters. We further show that KDM2 proteins shape RNA Polymerase II occupancy but not chromatin accessibility at CGI-associated promoters. Together this reveals a demethylase-independent role for KDM2 proteins in transcriptional repression and uncovers a new function for CGIs in constraining gene expression.
Project description:CpG islands (CGI) are associated with the majority of mammalian gene promoters and function to recruit chromatin modifying enzymes. It has therefore been proposed that CGIs regulate gene expression through chromatin-based mechanisms, however in most cases this has not been directly tested. Here, we reveal that the histone H3 lysine 36 (H3K36) demethylase activity of the CGI-binding KDM2 proteins contributes only modestly to the H3K36me2-depleted state at CGI-associated gene promoters and is dispensable for normal gene expression. Instead, we discover that KDM2 proteins play a widespread and demethylase-independent role in constraining gene expression from CGI-associated gene promoters. We further show that KDM2 proteins shape RNA Polymerase II occupancy but not chromatin accessibility at CGI-associated promoters. Together this reveals a demethylase-independent role for KDM2 proteins in transcriptional repression and uncovers a new function for CGIs in constraining gene expression.
Project description:Eukaryotic gene expression profiles are largely defined by transcription factors that recognize specific DNA sequences in gene regulatory regions and impact RNA polymerase recruitment and transcription. In addition to specific core promoter regulatory elements, up to 70% of genes in higher eukaryotes are also characterized by an overrepresentation of cytosine/guanine base pairs (CpGs) surrounding promoters and gene regulatory units. These features, called CpG islands, were identified over twenty years ago but there remains little mechanistic evidence to suggest how these enigmatic elements contribute to promoter function, with the exception that they are refractory to epigenetic silencing by DNA methylation. Here we uncover a role for CpG islands in buffering gene regulatory elements from repressive histone H3 lysine 36 methylation by directly recruiting the H3K36 specific lysine demethylase enzyme KDM2A. KDM2A is recruited to CpG islands by a zinc finger CxxC (ZF-CxxC) domain that specifically recognizes CpG DNA and is blocked by DNA methylation. This capacity to sense the epigenetic methylation state of DNA constrains KDM2A to non-methylated CpG islands. Importantly, these observations suggest CpG islands may function to delineate gene regulatory elements from bulk chromatin by recruiting factors that create unique chromatin architecture.
Project description:CpG islands (CGI) are associated with the majority of mammalian gene promoters and function to recruit chromatin modifying enzymes. It has therefore been proposed that CGIs regulate gene expression through chromatin-based mechanisms, however in most cases this has not been directly tested. Here, we reveal that the histone H3 lysine 36 (H3K36) demethylase activity of the CGI-binding KDM2 proteins contributes only modestly to the H3K36me2-depleted state at CGI-associated gene promoters and is dispensable for normal gene expression. Instead, we discover that KDM2 proteins play a widespread and demethylase-independent role in constraining gene expression from CGI-associated gene promoters. We further show that KDM2 proteins shape RNA Polymerase II occupancy but not chromatin accessibility at CGI-associated promoters. Together this reveals a demethylase-independent role for KDM2 proteins in transcriptional repression and uncovers a new function for CGIs in constraining gene expression.
Project description:Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation.<br><br>Using chromatin immunoprecipitation-microarrays (ChIP-chip) in prostate cancer cells, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation.
Project description:This SuperSeries is composed of the following subset Series: GSE29146: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [ChIP] GSE29147: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [RNAi] GSE29148: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [TKO] GSE29150: NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming [Transduction] Refer to individual Series