Project description:miR-126 were over-expressed using the miR-Vec system in highly metastatic LM2 cells. The LM2 cell line are described in detail in Minn et al. Nature 2005 This approach was used to conduct an unbiased search for specific miR-126 target genes in breast cancer cells.
Project description:This SuperSeries is composed of the following subset Series: GSE23904: Gene expression profilling of poorly metastatic MDA cells and highly metastatic LM2 cells. GSE23905: miR-126 over-expression in highly metastatic LM2 breast cancer cells. Refer to individual Series
Project description:miR-126 were over-expressed using the miR-Vec system in highly metastatic LM2 cells. The LM2 cell line are described in detail in Minn et al. Nature 2005 This approach was used to conduct an unbiased search for specific miR-126 target genes in breast cancer cells. 4 Samples
Project description:Abstract Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) “Normal-like” intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a dormant, normal-like, and more differentiated gene program.
Project description:The progression of cancer to metastatic disease is a major cause of death. We identified miR-708 being transcriptionally repressed by polycomb repressor complex (PRC2)-induced H3-K27 trimethylation in metastatic breast cancer. miR-708 targets the endoplasmic reticulum protein neuronatin (Nnat) to decrease intracellular calcium (Ca2+) level, resulting in reduction of activation of ERK and FAK, decreased cell migration, and impaired metastases. Functional complementation experiments with Nnat-3’UTR mutant, which is refractory to suppression by miR-708, rescued cell migration and metastasis defects. In breast cancer patients, miR-708 expression was decreased in lymph node and distal metastases, suggesting a metastasis-suppressive role. Our findings uncover a mechanistic role for miR-708 in metastasis and provide a rationale for developing miR-708 as a therapeutic agent against metastatic breast cancer. Sequencing miRNAs from Human breast cancer cells: MCF10A, MCF7, MDA-MB-231, MDA-MB-LM2
Project description:Comparison of gene expression between the breast cancer cell line MDA-MB-231 and its highly metastatic deriviate LM2 cells (described in Minn et al., Nature 2005). Results hilghlights potential metastasis promoting and suppressing genes.
Project description:Comparison of gene expression between the breast cancer cell line MDA-MB-231 and its highly metastatic deriviate LM2 cells (described in Minn et al., Nature 2005). Results hilghlights potential metastasis promoting and suppressing genes. 4 Samples
Project description:Abstract Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) “Normal-like” intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a dormant, normal-like, and more differentiated gene program. A total of six cell lines were used for gene expression analyses: CONTROL –DOX, CONTROL +DOX, ATF-126 –DOX, ATF-126 +DOX (all with 3 technical replicates), p-RetoX-Tight-Maspin –DOX, and p-RetoX-Tight-Maspin +DOX (with 2 technical replicates). For each cell line, total RNA was purified, amplified, labeled, and hybridized [46] using Agilent Agilent 4X44K oligo microarrays (Agilent Technologies, United States). The probes/genes were filtered by requiring the lowest normalized intensity values in both –DOX and +DOX samples to be >10. The normalized log2 ratios (Cy5 sample/Cy3 control) of probes mapping to the same gene were averaged to generate independent expression estimates. We also used available microarrays from the breast cancer cell lines [21], the UNC337-patient [20], the MERGE 550-patient dataset [47] and the NKI (295 patients [48,49]). All microarray cluster analyses were displayed using Java Treeview version 1.1.3. Average-linkage hierarchical clustering was performed using Cluster v2.12 [50]. ANOVA tests for gene expression data were performed using R (http://cran.r-project.org).
Project description:Transcriptional profiling of human breast cancer cell line LM2, a subline of MDA-MB-231 highly metastatic to lung when injected to nude mice, to identify the genes that are regulated after the metastasis gene metadherin is knocked down. Keywords: Genetic modification Empty pSuper vector control cells were compared to the cells transfected with the MTDH knockdown shRNA construct. Two cultured conditions were studied: the LM2 cancer cells were cultured alone or on top of a monolayer of human lung endothelial HMVEC-L cells. Three arrays for each sample.