Project description:The function of ID4 in CLL development was studied in vivo using TCL1 transgenic mouse model that develop leukemia similar to human CLL. TCL1 mice with ID4 single knockout gene have accelerated CLL progression. Results from the animal study suggest ID4 as a tumor suppressor gene that might regulate cell proliferation and apoptosis in B lymphocytes. Gene expression in CD19-positive splenic B cells collected from 1-month old ID4+/-TCL1-tg and ID4+/+TCL1-tg mice was compared by microarray, the goal is to find ID4-regulated genes involved in CLL development.
Project description:mRNA profiles of Treg, CD4+, CD8+, CD19+ splenic cells from 8-week-old Foxp3 YFP/cre mice injected with control (WT) or leukemic (TCL1) extracellular vesicles (EV) were analyzed in triplicate.
Project description:mRNA profiles of Treg, CD4+, CD8+, CD19+ splenic cells from 8-week-old Foxp3 YFP/cre mice incubated with control (WT) or leukemic (TCL1) extracellular vesicles (EV) were analyzed in triplicate.
Project description:Gene expression profile of splenic B cells (CD19+) from transgenic mice expressing the Epstein-Barr virus (EBV) latent membrane proteins (LMP) 1 and/or LMP2A. Freshly harvested primary B cells were profiled. B lymphocytes from transgenic LMP1, LMP2A, LMP1/2A mice and negative littermates were profiled from 6 month old adult mice; lymphoma cells were passaged in SCID mice and profiled for three LMP1 positive lymphomas and one negative lymphoma.
Project description:Gene expression profile of splenic B cells (CD19+) from transgenic mice expressing the Epstein-Barr virus (EBV) latent membrane proteins (LMP) 1 and/or LMP2A. Freshly harvested primary B cells were profiled. B lymphocytes from transgenic LMP1, LMP2A, LMP1/2A mice and negative littermates were profiled from 6 month old adult mice; lymphoma cells were passaged in SCID mice and profiled for three LMP1 positive lymphomas and one negative lymphoma. 12 total samples. 4 transgenic B lymphocyte samples pooled from multiple biological replicates were hybridized to duplicate microarrays: LMP1 (pooled from 2 replicates), LMP2A (pooled from 3 replicates); LMP1/2A (pooled from 5 replicates), negative littermates (pooled from 4 replicates). 3 biological replicates of LMP1 lymphomas expressing high, medium and low levels of LMP1 and; 1 negative lymphoma was hybridized to 1 microarray chip. The reference sample consisted of 4 biological replicates of splenic B cells (CD19+) pooled from 4-7 month old non-transgenic Balb/c mice. The same reference was used for all hybridizations.
Project description:The function of ID4 in CLL development was studied in vivo using TCL1 transgenic mouse model that develop leukemia similar to human CLL. TCL1 mice with ID4 single knockout gene have accelerated CLL progression. Results from the animal study suggest ID4 as a tumor suppressor gene that might regulate cell proliferation and apoptosis in B lymphocytes.
Project description:Tcl1 tg mice develop a chronic lymphocytic leukemia (CLL) -like disease. To investigate the contribution of the adhesion molecule CD44 to CLL pathophysiology, we developed a CD19Cre CD44flox/flox Tcl1 tg mouse with a B cell specific CD44 deficiency (CD44ΔB Tcl1 tg). We used the Clariom S mouse microarray from Affymetrix to investigate transcriptional differeneces between Tcl1 tg and CD44ΔB Tcl1 tg mice
Project description:Transcriptome analysis of RNA samples from leukemia cells of ROR1xTCL1 and TCL1 transgenic mice Animals engrafted with ROR1xTCL1 leukemia-cells developed more aggressive disease than mice engrafted with TCL1 leukemia cells. Transcriptome analysis of RNA samples from leukemia ROR1xTCL1 transgenic mice revealed shared common gene expression signatures that were distinct from those of TCL1 leukemia-cells. We performed microarray transcriptome analyses on isolated leukemia cells that developed in ROR1xTCL1 Tg mice (n=4) or TCL1 Tg mice (n=4) using the Affymetrix Mouse Exon 1.0 ST platform. Array data was processed by Affymetrix Exon Array Computational Tool. No techinical replicates were performed.
Project description:B cell chronic lymphocytic leukemia (CLL) is often preceded by a benign monoclonal or oligoclonal CD5+ B cell lymphocytosis. We have generated transgenic mice expressing a catalytically inactive, dominant-negative recombination activating gene 1 (dnRAG1 mice) in the periphery. These animals develop an early-onset indolent CD5+ B cell lymphocytosis, caused in part by a defect in secondary V(D)J rearrangements initiated to alter autoreactive B cell receptor specificity. Hypothesizing that the CD5+ B cells accumulating in dnRAG1 mice represent a CLL precursor, we crossed dnRAG1 mice with CLL-prone Eµ-TCL1 mice to determine whether dnRAG1 expression in Eµ-TCL1 mice accelerates the onset of CLL-like disease. We find that CD5+ B cell expansion and CLL progression occurs more rapidly and uniformly in double-transgenic mice (DTG mice) compared to Eµ-TCL1 mice, but with similar phenotypic and leukemogenic features. To gain insight into genes or pathways responsible for CD5+ B cell accumulation in the transgenic mice, we performed comparative gene expression profiling studies using normal and CD5+ B cells isolated from wild-type and transgenic mice at either 12 weeks of age (pre-leukemia) or at CLL onset in DTG mice (using age-matched wild-type and single-transgenic mice as controls). These analyses confirm the upregulation of tolerogenic genes in CD5+ B cells and reveal a possible role for prolactin signaling in the regulation of receptor editing. This study suggests that a failure to remodel B cell antigen receptor genes in response to autoreactivity may promote the benign accumulation of CD5+ B cells, which may then be subjected to secondary genetic lesions that promote CLL progression. dnRAG1 mice were bred to Eµ-TCL1 mice to obtain cohorts of wild-type (WT), single-transgenic (dnRAG1 and Eµ-TCL1), and DTG mice. Splenic CD19+B220hiCD5- B cells from WT mice or CD19+CD5+ B cells from transgenic mice were purified using fluorescence activated cell sorting (FACS). Biotin end-labeled cDNA prepared from the sorted cells was hybridized to Mouse Gene 1.0 ST Arrays. These experiments were performed two independent times: once with a cohort of 12-week-old mice, and once with older mice (>34 weeks old) consisting of two ill DTG mice and their age-matched counterparts. At least two biological replicates were used where possible.