Project description:This SuperSeries is composed of the following subset Series: GSE30528: Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Glomeruli vs. Control Glomeruli) GSE30529: Transcriptome Analysis of Human Diabetic Kidney Disease (DKD Tubuli vs. Control Tubuli) GSE30566: Transcriptome Analysis of Human Diabetic Kidney Disease (Control Glomeruli vs. Control Tubuli) Refer to individual Series
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:identified cluster of microRNAs significantly increased in kidney glomeruli from diabetic mice compared to nondiabetic control mice RNAs from kidney glomeruli from control mice and STZ-injected diabetic mice were extracted.
Project description:We investigated the gene expression profiles of RNA isolated from kidney glomeruli from aged, 25 week old type-2 diabetic (db/db) and non-diabetic mice. In order to investigate the consequences of hyperglycemia on the pathogenesis and progression of diabetic nephropathy Kidney glomeruli from 3 diabetic and 3 non-diabetic, control mice were isolated and RNA purified for RNA-Seq analysis on the Illumina HiSeq 2000. The goal of the project was to generate comprehensive list of noncoding RNA genes differentially regulated between the two conditions in order to identify novel targets for further study.
Project description:Background: Recent single-cell RNA sequencing (scRNA-seq) analyses have offered much insight into cell-specific gene expression profiles in normal kidneys. However, in diseased kidneys, understanding of changes in specific cells, particularly glomerular cells, remains limited. Methods: To elucidate the glomerular cell–specific gene expression changes in diabetic kidney disease, we performed scRNA-seq analysis of isolated glomerular cells from streptozotocin-induced diabetic endothelial nitric oxide synthase (eNOS)–deficient (eNOS-/-) mice and control eNOS-/- mice. Results: We identified five distinct cell populations, including glomerular endothelial cells, mesangial cells, podocytes, immune cells, and tubular cells. Using scRNA-seq analysis, we confirmed the expression of glomerular cell–specific markers and also identified several new potential markers of glomerular cells. The number of immune cells was significantly higher in diabetic glomeruli compared with control glomeruli, and further cluster analysis showed that these immune cells were predominantly macrophages. Analysis of differential gene expression in endothelial and mesangial cells of diabetic and control mice showed dynamic changes in the pattern of expressed genes, many of which are known to be involved in diabetic kidney disease. Moreover, gene expression analysis showed variable responses of individual cells to diabetic injury. Conclusion: Our findings demonstrate the ability of scRNA-seq analysis in isolated glomerular cells from diabetic and control mice to reveal dynamic changes in gene expression in diabetic kidneys, with variable responses of individual cells. Such changes, which might not be apparent in bulk transcriptomic analysis of glomerular cells, may help identify important pathophysiologic factors contributing to the progression of diabetic kidney disease.
Project description:Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy Keywords = Diabetes Keywords = kidney Keywords = glomeruli Keywords: other
Project description:Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy Keywords = Diabetes Keywords = kidney Keywords = glomeruli Keywords: other. This dataset is part of the TransQST collection.