Project description:Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2,051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 hours post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 hours post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies.
Project description:The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their algal endosymbionts (Symbiodinium spp.). Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of the cellular processes specific to coral-algal symbioses. In the present study, we utilized a cDNA microarray containing 2,059 genes of the Caribbean Elkhorn coral Acropora palmata to identify genes differentially expressed upon thermal stress. Fragments from four separate colonies were exposed to elevated temperature (3˚C increase) for two days, and samples were frozen for microarray analysis after 24 and 48 hours. Fragments experienced a 60% reduction in algal cell density after two days. 204 genes were differentially expressed in samples collected one day after thermal stress; in samples collected after two days, 104 genes. Annotations of the differentially expressed genes indicate a conserved cellular stress response in A. palmata involving: 1) growth arrest; 2) chaperone activity; 3) nucleic acid stabilization and repair; and 4) the removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and symbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are also compared to those from a previous coral microarray study of thermal stress in Montastraea faveolata.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata, where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest.
Project description:Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2,051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 hours post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 hours post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. Our experimental setup followed a reference design where all samples were hybridized against the same pool made up of equal amounts of RNA from all samples in the experiment. Biological duplicate samples were used for each temperature at each developmental time period. Common reference samples were labeled with Cy3 dye, while temperature samples were labeled with Cy5 dye. Microarrays for A. palmata contained 2,051 coding sequences, of which 54.3% had functional annotations as determined by homology to known genes.
Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata, where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest. We employed a reference design where all control and dark-stressed samples were compared to a pooled reference aRNA sample composed of aRNA from all fragments. Since all RNA samples were compared to the reference sample, direct comparisons of gene expression across all time points and conditions can be performed.
Project description:The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. To test the hypothesis that larval transcription profiles reflect population specific responses to thermal stress, symbiont-free gametes of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico and raised under normal and elevated temperatures. These populations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among thousands of genes were simultaneously characterized using microarrays, allowing investigation of gene expression patterns among wild populations under stressful environmental conditions. Results show site-specific signatures of gene expression in larvae of a reef-building coral from different parts of its range (despite low genetic divergence), and reveal both local and general components of stress response during later stages of larval development. These results provide evidence of site-specific variation in the face of gene flow, which may represent functional genetic variation in different subpopulations, and support the idea that coral host genomes may indeed house the adaptive potential needed to deal with changing environmental conditions.