Project description:Pathological processes like osteoporosis or steroid-induced osteonecrosis of the hip are accompanied by increased bone marrow adipogenesis. Such disorder of adipogenic/osteogenic differentiation, which affects also bone marrow derived mesenchymal stem cells (BMSCs) contributes to bone loss during aging. Therefore, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on osteogenic and adipogenic differentiation capacity of naïve hBMSCs.
Project description:Global gene expression data of human embryonic stem cell-, human induced pluripotent stem cell- and bone marrow-derived mesenchymal progenitor cells before and after culture onto osteoinductive scaffolds in perfusion bioreactors. The hypothesis tested in the present study was that perfusion culture in bioreactors influenced the expression levels of several genes involved in proliferation and osteogenic differentiation. Results provide important information of the response of human embryonic stem cell-, human induced pluripotent stem cell- and bone marrow-derived mesenchymal progenitor cell to osteogenic stimulation under perfusion cultures, such as genes involved in cell proliferation and division as well as osteogenic differentiation and bone development. Total RNA obtained from human embryonic stem cell-, human induced pluripotent stem cell- and bone marrow-derived mesenchymal progenitor cells before and after culture under osteogenic conditions in perfusion bioreactors for 5 weeks.
Project description:Mesenchymal stromal cells (MSCs) have been introduced as promising cell source for regenerative medicine. Besides their multilineage differentiation capacity, MSCs release a wide spectrum of bioactive factors. This secretome holds immunomodulatory and regenerative capacities. In intervertebral disc (IVD) cells, application of MSC secretome has been shown to decrease the apoptosis rate, induce proliferation and promote production of extracellular matrix (ECM). For clinical translation of secretome-based treatment, characterization of the secretome composition is needed to better understand the induced biological processes and identify potentially effective secretomes. Methods: This study aimed to investigate the proteome released by bone marrow derived MSCs following exposure to a healthy, traumatic, or degenerative human IVD environment by mass spectroscopy and quantitative immunoassay analyses. Exposure of MSCs to the proinflammatory stimulus interleukin 1β (IL-1b) was used as control.
Project description:Mesenchymal stem cells (MSC) are bone-marrow derived cells, capable of multipotent differentiation into connective tissues including bone, tendon and cartilage. They are an attractive source for autologous cell-based treatments for a range of clinical diseases and injuries. MSCs have been demonstrated to possess an age-related loss of cellular functions including differentiation potential and proliferation capacity; with implications for stem cell therapies in older patients. Furthermore the reduction in differentiation potential could contribute to ageing and age-related disease. Biological aging is coupled with a progressive reduction in the regulation of cellular, tissue and organ interaction, resulting in senescence. The purpose of this study was to investigate the epigenetic, RNA and protein changes in ageing MSCs in order to understand the age-related functional and biological changes required for their applications in regenerative medicine.
Project description:Global gene expression data of human embryonic stem cell-, human induced pluripotent stem cell- and bone marrow-derived mesenchymal progenitor cells before and after culture onto osteoinductive scaffolds in perfusion bioreactors. The hypothesis tested in the present study was that perfusion culture in bioreactors influenced the expression levels of several genes involved in proliferation and osteogenic differentiation. Results provide important information of the response of human embryonic stem cell-, human induced pluripotent stem cell- and bone marrow-derived mesenchymal progenitor cell to osteogenic stimulation under perfusion cultures, such as genes involved in cell proliferation and division as well as osteogenic differentiation and bone development.
Project description:Mesenchymal stem cells (MSC) are bone-marrow derived cells, capable of multipotent differentiation into connective tissues including bone, tendon and cartilage. They are an attractive source for autologous cell-based treatments for a range of clinical diseases and injuries. MSCs have been demonstrated to possess an age-related loss of cellular functions including differentiation potential and proliferation capacity; with implications for stem cell therapies in older patients. Furthermore the reduction in differentiation potential could contribute to ageing and age-related disease. Biological aging is coupled with a progressive reduction in the regulation of cellular, tissue and organ interaction, resulting in senescence. The purpose of this study was to investigate the epigenetic, RNA and protein changes in ageing MSCs in order to understand the age-related functional and biological changes required for their applications in regenerative medicine.
Project description:Bone regeneration relies on the activation of skeletal stem cells (SSCs) that still remain poorly characterized. Here, we show that periosteum contains SSCs with high bone regenerative potential compared to bone marrow stromal cells/skeletal stem cells (BMSCs) in mice. Although periosteal cells (PCs) and BMSCs are derived from a common embryonic mesenchymal lineage, post-natally PCs exhibit greater clonogenicity, growth and differentiation capacity than BMSCs. During bone repair, PCs can efficiently contribute to cartilage and bone, and integrate long-term after transplantation. Molecular profiling uncovers genes encoding Periostin and other extracellular matrix molecules associated with the enhanced response to injury of PCs. Periostin gene deletion impairs PC functions and fracture consolidation. Periostin-deficient periosteum cannot reconstitute a pool of PCs after injury demonstrating the presence of SSCs within periosteum and the requirement of Periostin in maintaining this pool. Overall our results highlight the importance of analyzing periosteum and PCs to understand bone phenotypes.
Project description:LncRNA transcriptional profiling of human bone marrow-derived mesenchymal stem cells comparing control undifferentiated MSCs with Day 0 and Day 10 osteogenic differentiation stages