Project description:Piwi regulates niche and intrinsic mechanisms to maintain germline stem cells in Drosophila, yet how this regulation occurs remains elusive. Here, we show that Piwi interacts with the Polycomb Group Complexes PRC1 and PRC2 to maintain ovarian germline stem cells and oogenesis, as well as to repress retrotransposons. Piwi binds to PRC2 subunits Su(z)12 and Esc in vitro and forms a complex with PRC2 in vivo. Whole-genome analyses of PRC2-mediated histone 3 lysine 27 trimethylation (H3K27m3) in wild type and piwi mutant ovarian nuclei indicate that Piwi inhibits H3K27m3 at PRC2 target genes that are mostly regulators of development and transcription.
Project description:The piRNA pathway is studied in great detail in Drosophila female germline. In this study we show that unlike the female germline where all Piwi proteins are expressed throughout oogenesis, Ago3 - a Piwi family protein shows a spatial expression male germline. To understand dynamics of piRNA pathway during spermatogonia and primary spermatocyte stages of male germline development, we used arrest mutants. The bag of marbles (bam) and benign gonial cell neoplasm (bgcn) mutants have only early mitotic dividing germline cells in the testes due to failure to progress to primary spermatocyte stage, the cannonball (can) and spermatocyte arrest (sa) mutant germline cells cannot progress beyond primary spermatocyte stage. To investigate the dynamics of the piRNA pathway during spermatogenesis in spermatogonia and primary spermatocyte stages, we used testicular tissues from these stage-specific arrested mutants. While we used entire bam and bgcn mutant testes for spermatogonia purification, we while we manually removed the apical regions of can and sa mutant testes to exclude mitotically dividing undifferentiated germline cells for primary spermatocytes purification. Our results show that piRNAs mapping to transposons are more abundant in spermatogonia, whereas those mapping to Suppressor of Stellate [Su(Ste)] and AT-chX are mostly expressed in primary spermatocytes. Furthermore we observed that transposon-mapping piRNAs with ping-pong signature are more abundant in spermatogonia albeit still detectable in primary spermatocytes where Ago3 is not expressed. These results suggest that robust piRNA production via ping-pong cycle takes place in spermatogonia, and to a lesser extent in primary spermatocytes even in the absence of Ago3. Consistently, piRNAs from ago3 mutant testes also exhibit the ping-pong signature, confirming that a non-canonical ping-pong cycle is acting during spermatogenesis. Our study provides a developmental dimension to the piRNA pathway and uncovers a new mechanism used in the male germline to silence transposons. The difference in piRNA from spermatogonia and primary spermatocyte stages was studied by comparing small RNAs from bam and bgcn mutant testis, which represent spermatogonia stages with the small RNAs from apex removed can and sa testis, representing primary spermatocyte stages. In the study we also studied effect of loss of Piwi family proteins Aub and Ago3, which have different spatial expression during male germline development.
Project description:The piRNA pathway is studied in great detail in Drosophila female germline. In this study we show that unlike the female germline where all Piwi proteins are expressed throughout oogenesis, Ago3 - a Piwi family protein shows a spatial expression male germline. To understand dynamics of piRNA pathway during spermatogonia and primary spermatocyte stages of male germline development, we used arrest mutants. The bag of marbles (bam) and benign gonial cell neoplasm (bgcn) mutants have only early mitotic dividing germline cells in the testes due to failure to progress to primary spermatocyte stage, the cannonball (can) and spermatocyte arrest (sa) mutant germline cells cannot progress beyond primary spermatocyte stage. To investigate the dynamics of the piRNA pathway during spermatogenesis in spermatogonia and primary spermatocyte stages, we used testicular tissues from these stage-specific arrested mutants. While we used entire bam and bgcn mutant testes for spermatogonia purification, we while we manually removed the apical regions of can and sa mutant testes to exclude mitotically dividing undifferentiated germline cells for primary spermatocytes purification. Our results show that piRNAs mapping to transposons are more abundant in spermatogonia, whereas those mapping to Suppressor of Stellate [Su(Ste)] and AT-chX are mostly expressed in primary spermatocytes. Furthermore we observed that transposon-mapping piRNAs with ping-pong signature are more abundant in spermatogonia albeit still detectable in primary spermatocytes where Ago3 is not expressed. These results suggest that robust piRNA production via ping-pong cycle takes place in spermatogonia, and to a lesser extent in primary spermatocytes even in the absence of Ago3. Consistently, piRNAs from ago3 mutant testes also exhibit the ping-pong signature, confirming that a non-canonical ping-pong cycle is acting during spermatogenesis. Our study provides a developmental dimension to the piRNA pathway and uncovers a new mechanism used in the male germline to silence transposons.
Project description:PIWI proteins and their associated small noncoding piRNAs, which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the early embryo in Drosophila. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal Piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the adult ovaries of progeny. Furthermore, the maternal piRNA pool is diminished, reducing the capacity of the PIWI/piRNA complex to target some zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and gene expression in the adult ovary showed that the germline of female progeny is partially masculinized upon maternal Piwi knockdown . This reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Project description:we identify Scml2, a subunit of a germ cell-specific polycomb repressive complex 1 (PRC1), as a critical epigenetic modifier that establishes the germline-specific epigenome through two distinct functions. One of these functions is in the stem cell phase of spermatogonia and the other is on meiotic sex chromosomes. During the stem cell phase of spermatogonia, Scml2 establishes Rnf2- dependent ubiquitination of H2A (Rnf2-ubH2A) as an epigenetic memory that subsequently ensures programmed repression of somatic genes during the late stages of spermatogenesis. Additionally, during meiosis, Scml2 interacts with M-NM-3H2AX and works downstream of the DNA damage response factor Mdc1 on the sex chromosomes and, contrary to autosomes, suppresses Rnf2-ubH2A for proper epigenetic programming of the sex chromosomes. Taken together, Scml2 positively regulates Rnf2-ubH2A on autosomes and negatively regulates Rnf2-ubH2A on the sex chromosomes to establish the germline-specific epigenome in spermatogenesis. Our study reveals a novel layer of epigenetic regulation in the male germline and adds further insight into the functionality of the polycomb proteins. RNA-seq and ChIP-seq analyses using wild-type and Scml2 KO spermatogenic cells
Project description:PIWI-clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ~23-30nt piRNAs that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endo-nuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the inter-dependencies between these piRNA biogenesis pathways in the developing Drosophila ovary. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and that defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear, transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. To understand the hierarchical order of primary versus secondary piRNA biogenesis in Drosophila ovaries, we sequenced piRNAs bound to total-Piwi, germline-Piwi, Aubergine and Argonaute3 from ovaries of germline specific knockdowns of control, piwi, aub, ago3 single knockdowns and aub/ago3 double knockdowns. To determine changes in Transposable Element (TE) transcription or TE RNA steady state in perturbed piRNA pathway conditions, we performed Pol2-ChIP-sequencing and polyA bound RNA-sequencing from ovaries of multiple germline knockdown genotypes. We also sequenced genomic DNA from ovaries of control knockdowns to experimentally estimate the TE copy number in our genetic background. Finally, we used CAP-seq from germline specific Piwi depletions to identify the Transcriptional Start Sites (TSS) in TEs in a deregulated background. Replicates are labeled with R1, R2, R3, R4 where indicated.
Project description:Argonaute proteins of the PIWI-clade, complexed with PIWI-interacting RNAs (piRNAs), protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that integrates transgenic RNAi in the germline, GFP-marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only upon germ cell cyst formation. Stage specific RNAi allows investigating the role of genes essential for cell survival (e.g. nuclear RNA export or the SUMOylation pathways) in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit available from the Vienna Drosophila Resource Center.
Project description:The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different transposons types. Examination of small RNA levels from nos-GAL4 or tj-GAL4 driven UAS-dsRNA knockdowns of control genes and piRNA pathway components in ovaries of Drosophila melanogaster by deep sequencing (using Illumina HiSeq2000).
Project description:The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different transposons types. Examination of total RNA levels from nos-GAL4 or tj-GAL4 driven UAS-dsRNA knockdowns of control genes and piRNA pathway components in ovaries of Drosophila melanogaster by deep sequencing (using Illumina HiSeq2000).