Project description:This project aims to identify molecular effects of piwi mutations and c-Fos overexpression on the formation of Drosophila ovarian germline RNA-seq was utilized to compare transcript levels between wild type, piwi mutant, and c-Fos over-expressing ovarian tissues
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries small RNAs (23-29nt) were isolated from total ovarian RNA or from immunopreciptated Piwi/Aubergine/Ago3 complexes. cDNA libraries were constructed after Pfeffer et al. 2005 (Nat. Methods) and sequenced at 454 Life Sciences. The used strain is OregonR. Only sequences matching the Release5 genome assembly (www.fruitfly.org) are considered.
Project description:Heterochromatin, representing the silenced state of transcription, largely consists of transposon-enriched and highly repetitive sequences. Implicated in heterochromatin formation and transcriptional silencing in Drosophila are PIWI and repeat-associated small interfering RNAs (rasiRNAs). Despite this, the role of PIWI in rasiRNA expression and heterochromatic silencing remains unknown. Here we report the identification and characterization of 12,903 PIWI-interacting RNAs (piRNAs) in Drosophila, demonstrating that rasiRNAs represent a subset of piRNAs. Keywords: PIWI, piRNA, epigenetic regulation, heterochromatin
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries
Project description:Argonaute proteins of the PIWI-clade, complexed with PIWI-interacting RNAs (piRNAs), protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that integrates transgenic RNAi in the germline, GFP-marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only upon germ cell cyst formation. Stage specific RNAi allows investigating the role of genes essential for cell survival (e.g. nuclear RNA export or the SUMOylation pathways) in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit available from the Vienna Drosophila Resource Center.
Project description:The piRNA-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of D. melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their posttranscriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.