Project description:In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of the TLR3- and UNC-93B-dependent induction of IFN-α/β and/or IFN-λ immunity are prone to HSV-1 encephalitis (HSE) 1-3. The cells responsible for HSE in these children have yet to be identified. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were allowed to differentiate into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-λ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. The rescue of UNC-93B-deficient cells with the wild-type UNC93B1 allele demonstrated the genetic defect as the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-λ1. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection, a phenotype rescued by wild-type TLR3. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies One human ESC line (H9) was differentiated into 4 different cell types, neural rosettes, CNS neurons, astrocytes and immature oligodendrocytes. Rosettes were purified manually, neurons were sorted negatively for the surface markers EGFR and CD44, oligodendrocyte cells were positively sorted for the surface marker O4 while astrocytes were enriched by growth in serum containing medium. All cell types were subjected to RNA extraction and hybridization on Illumina microarrays. Each sample has 3 biological repeats, except rosettes which has 2 repeats. In a seperate experiement, undifferentiated H9 cells along with H9-derived neurons and astrocyes as well as UNC93B-/- iPS derived neurons and astrocytes were also subjected to RNA extraction and hybridization on Illumina microarrays.
Project description:In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of the TLR3- and UNC-93B-dependent induction of IFN-α/β and/or IFN-λ immunity are prone to HSV-1 encephalitis (HSE) 1-3. The cells responsible for HSE in these children have yet to be identified. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were allowed to differentiate into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-λ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. The rescue of UNC-93B-deficient cells with the wild-type UNC93B1 allele demonstrated the genetic defect as the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-λ1. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection, a phenotype rescued by wild-type TLR3. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies
Project description:We aim to analyze the transcriptional profiles of primary human keratinocytes in response to interferon gamma (IFNG) treatment and/or HSV-2 (strain HG-52) infection. The goal is to define IFNG regulated intrinsic immunity of primary human keratinocytes and how HSV-2 infection regulates the intrinsic immunity of primary human keratinocyte.
Project description:We hypothesize that human RIPK3 deficiency does not result in impairment of type I IFN mediated antiviral immunity, contrasting with the situation in deficiencies of the TLR3-IFNAR1 circuit. To test the cellular responses to HSV1 at the wide transcriptome level, bulk RNA sequencing was performed with human primary fibroblasts without or with HSV-1 infection for 24 hours, in cells from healthy controls, RIPK3 HSE patient and other patients with recessive TLR3, IFNAR1 or NEMO deficiency.
Project description:Inborn errors of TLR3-dependent IFN-α/β- and -λ-mediated immunity in the central nervous system (CNS) can underlie herpes simplex virus 1 (HSV-1) encephalitis (HSE). The respective contributions of IFN-α/β- and -λ are unknown. We report a child homozygous for a genomic deletion of the entire coding sequence and part of the 3’UTR of the last exon of IFNAR1, who died from HSE at the age of two years. An older cousin died following vaccination against measles, mumps and rubella at 12 months of age, and another 17-year-old cousin homozygous for the same variant has had other viral illnesses. The encoded IFNAR1 protein is expressed on the cell surface but is truncated and cannot interact with the tyrosine kinase TYK2. The patient’s fibroblasts and EBV-B cells did not respond to IFN-α2b or IFN-β, in terms of STAT1, STAT2 and STAT3 phosphorylation, or the induction of IFN-stimulated genes (ISGs). Transcriptome analysis revealed a complete abolition of genome-wide ISG induction in response to IFN-α2b in IFNAR1-deficient fibroblasts from the patient. These fibroblasts were susceptible to viruses, including HSV-1, even in the presence of exogenous IFN-α2b or IFN-β. HSE is therefore a consequence of inherited complete IFNAR1 deficiency. This experiment of Nature indicates that IFN-α/β are essential for anti-HSV-1 immunity in the CNS.
Project description:Inborn errors of human IFN-γ immunity underlie mycobacterial diseases, whereas inborn errors of IFN-a/b immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe two unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-a/b immunity. The IRF1-dependent cellular responses to IFN-γ are, both quantitatively and qualitatively, much greater than those to IFN-a/b in vitro. Monocyte- and iPSC-derived macrophages from the two patients show no upregulation of at least 20% of the target genes normally induced by IFN-γ. By contrast, cell-intrinsic IFN-a/b immunity to diverse viruses, including SARS-CoV-2, is intact. Human IRF1 is, thus, largely redundant for antiviral IFN-a/b immunity. By contrast, human IRF1 is essential for IFN-γ immunity to mycobacteria in myeloid cells.
2023-01-19 | PXD037759 | Pride
Project description:Neuron intrinsic immunity to HSV-1 infection
Project description:FT500 is an off-the-shelf, iPSC-derived NK cell product that can bridge innate and adaptive immunity, and has the potential to overcome multiple mechanisms of immune checkpoint inhibitor (ICI) resistance. The preclinical data provide compelling evidence supporting the clinical investigation of FT500 as monotherapy and in combination with ICI in participants with advanced solid tumors.
Project description:Inborn errors of human IFN-γ immunity underlie mycobacterial diseases, whereas inborn errors of IFN-/ immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe two unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-/ immunity. The IRF1-dependent cellular responses to IFN-γ are, both quantitatively and qualitatively, much greater than those to IFN-/ in vitro. Monocyte- and iPSC-derived macrophages from the two patients show no upregulation of at least 20% of the target genes normally induced by IFN-γ. By contrast, cell-intrinsic IFN-/ immunity to diverse viruses, including SARS-CoV-2, is intact. Human IRF1 is, thus, largely redundant for antiviral IFN-/ immunity. By contrast, human IRF1 is essential for IFN-γ immunity to mycobacteria in myeloid cells.