Project description:The protein Glycine-N-Acyltransferase Like 1 (GLYATL1) is involved in detoxification of benzoate and other xenobiotics and is expressed in liver and kidney. Through In silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry we show that GLYATL1 is overexpressed in primary prostate cancer compared to metastatic prostate cancer and benign prostatic tissue. Low grade cancers had higher GLYATL1 expression compared to high grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways. In summary, our study characterizes the expression GLYATL1 in prostate cancer and explore its regulation mechanism. Future studies are needed to decipher the biological significance of these findings.
Project description:Gene expression profiling of LNCaP prostate cancer cells that have JMJD2A knockdown (JMJD2A shRNA #3; JMJD2A shRNA #5) or ETV knockdown (ETV shRNA #1; ETC shRNA #5) were compared to non-targeted control (sh-cm) cells. Total RNA was isolated from transformed LNCaP human prostate cancer cells containing a non-trageting control vector (sh-cm), vectors containing shRNA sequences for JMJD2A or ETV1 genes.
Project description:Over half of prostate cancer harbor overexpression of ETS transcription factors including ERG and ETV1. LNCaP prostate cancer cells have an ETV1 translocation to the MIPOL1 locus on 14q13.3-13q21.1. To determine genes regulated by ETV1, we performed shRNA mediated knockdown of ETV1 using two lentiviral constructs as well as a scrambled shRNA in triplicate. Two pLKO.1 constructs against ETV1 (ETV1sh1: TRCN0000013923, targeting GTGGGAGTAATCTAAACATTT in 3'(B UTR; and ETV1sh2: TRCN0000013925, targeting CGACCCAGTGTATGAACACAA in exon 7) were purchased from Open Biosystems and pLKO.1 shScr (targeting CCTAAGGTTAAGTCGCCCTCG) was purchased from Addgene. RNA was harvested 3 days after infection and gene expression profiling was performed. Among genes downregulated were many well characterized androgen regulated genes. LNCaP cells logarthmically growing in full serum was infected with three different shRNA lentiviruses. Three days after infection
Project description:Chromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate cancer cells control VCaP and LNCaP cells with ERG- or ETV1-silenced VCaP or LNCaP cells, respectively, in hormone deprived and stimulated conditions.
Project description:Over half of prostate cancer harbor overexpression of ETS transcription factors including ERG and ETV1. LNCaP prostate cancer cells have an ETV1 translocation to the MIPOL1 locus on 14q13.3-13q21.1. To determine genes regulated by ETV1, we performed shRNA mediated knockdown of ETV1 using two lentiviral constructs as well as a scrambled shRNA in triplicate. Two pLKO.1 constructs against ETV1 (ETV1sh1: TRCN0000013923, targeting GTGGGAGTAATCTAAACATTT in 3'(B UTR; and ETV1sh2: TRCN0000013925, targeting CGACCCAGTGTATGAACACAA in exon 7) were purchased from Open Biosystems and pLKO.1 shScr (targeting CCTAAGGTTAAGTCGCCCTCG) was purchased from Addgene. RNA was harvested 3 days after infection and gene expression profiling was performed. Among genes downregulated were many well characterized androgen regulated genes.
Project description:Chromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate cancer cells control VCaP and LNCaP cells with ERG- or ETV1-silenced VCaP or LNCaP cells, respectively, in hormone deprived and stimulated conditions. VCAP and LNCaP cells, 24 hr after ERG or ETV1 RNA interference, respectively, were grown in hormone-depleted conditions for 2 days, and then in the presence of EtOH (vehicle) or 10nM DHT for 16hr. Total RNA was extracted from three biological replicates. This was used to hybridize to Affymetrix expression arrays using the HG-U133 Plus 2.0 platform.