Project description:Esam/CD4+ dendritic cells are part of the innate immunity essential for priming and activating of CD4+ T cells To identify Runx3 responsive genes Esam dendritic cells were freshly sorted from macs enriched splenic DCs taken from 6 weeks old mice. Four samples from four mice were sorted and analyzed where in each littermates pair consisted of a control and Runx3 conditional KO. Mice lacking Runx3 specifically in the DC compartment were produced by crossing Runx3fl/fl mice onto CD11c-Cre mice. This mating scheme generated Runx3fl/fl/CD11c:Cre (CD11c-DC-Runx3Δ) mice.
Project description:Cellular binary fate decisions require the progeny to silence genes associated with the alternative fate. The major subsets of alpha:beta T cells have been extensively studied as a model system for fate decisions. While the transcription factor RUNX3 is required for the initiation of Cd4 silencing in CD8 T cell progenitors, it is not required to maintain the silencing of Cd4 and other helper T lineage genes. The other runt domain containing protein, RUNX1, silences Cd4 in an earlier T cell progenitor, but this silencing is reversed whereas the gene silencing after RUNX3 expression is not reverse. Therefore, we hypothesized that RUNX3 and not RUNX1 recruits other factors that maintains the silencing of helper T lineage genes in CD8 T cells. To this end, we performed a proteomics screen of RUNX1 and RUNX3 to determine candidate silencing factors.
Project description:CD4+ dendritic cells are part of the innate immunity essential for priming and activating of CD4+ T cells To identify Runx3 responsive genes CD4+ dendritic cells were sorted from freshly isolated macs enriched splenic DCs taken from 6 weeks old mice. Six samples from six mice were sorted and analyzed where in each littermates pair consisted of a control and Runx3 KO.
Project description:Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b+ DCs, Notch signaling blockade ablated a distinct population marked by high expression of adhesion molecule Esam. The Notch-dependent Esamhi DC subset also required lymphotoxin beta receptor signaling, proliferated in situ and facilitated efficient CD4+ T cell priming. The Notch-independent Esamlo DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b+ CD103+ DCs in the intestinal lamina propria and to the corresponding decrease of IL-17-producing CD4+ T cells in the intestine. Thus,Notch2 is a common differentiation signal for T cell-priming CD11b+ DC subsets in the spleen and intestine. We compared genome-wide expression profiles of wild-type Esam(hi) and Esam(lo) splenic CD11b+ DC populations, along with CD11b+ DCs from DC-RBPJΔ mice. Spleens from 2-3 Cx3cr1-GFP+ RBPJflox/flox CD11c-Cre+ mice or Cx3cr1-GFP+ RBPJflox/flox Cre-negative littermate controls were isolated, pooled and depleted of lymphoid and erythroid cells by negative selection on MACS columns. Live cells were stained for surface expression of CD11c, CD11b and Esam. CD11c(hi) CD11b+ DCs from control mice could be separated into Esam(lo) GFP(hi) versus Esam(hi) GFP(lo) subsets. CD11c(hi) CD11b+ DCs from RBPJ-targeted mice spleens were uniformly Esam(lo) GFP(hi). The two subsets from control mice and single Esam(lo) GFP(hi) subset from RBPJ-targeted mice were sorted using FACSAria II flow sorter and analyzed using GeneChip Mouse Gene 1.0 ST Array (Affymetrix).