Project description:Background: The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes up-regulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods: To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results: We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an up-regulation of ALKBH3 non-bound inflammatory genes. Conclusions: The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression. PC3 cells were infected with ALKBH3 shRNA or Control shRNA for 48 hours and selected with puromycine. Cells were collected after 48h or 96h past selection.
Project description:Background: The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes up-regulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods: To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results: We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an up-regulation of ALKBH3 non-bound inflammatory genes. Conclusions: The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression.
Project description:Background: The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes up-regulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods: To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results: We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an up-regulation of ALKBH3 non-bound inflammatory genes. Conclusions: The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression.
Project description:In order to address the putative role of MELK and UBE2C in prostate cancer development and progression, we performed functional analysis upon siRNA-based knockdown, and searched for downstream genes and processes by microarray experiments. RNAi-based inhibition of MELK and UBE2C was efficient in PC3 prostate cancer cells and decreased transcriptional level down to about 30% remaining expression level. Illumina microarray experiments were done upon siRNA based knockdown 48h after transfection of PC3 cells in triplicates.
Project description:To determine the underlying mechanism of ONECUT2 in prostate cancer hypoxia, we conducted a series of RNA-Seq and ChIP-Seq experiments in LNCaP and PC3 cells under normoxia and hypoxia conditions. We did RNA-Seq in LNCaP cells with or without OC2 overexpression and in PC3 cells with or without OC2 knockdown. We used anti-Flag antibody to perform the ChIP-Seq experiment in PC3 cells with Flag and OC2 fusion protein overexpression. We also performed HIF1A ChIP-Seq in AR-negative prostate cancer cell line PC3 under hypoxia condition with or without ONECUT2 or SMAD3 siRNA knockdown. SMAD3 and HIF2A ChIP-Seq were conducted in PC3 cells under hypoxia condition. To confirm the interactions between transcription factors, we also performed ChIP-reChIP-seq. We did the primary ChIP experiment using anti-SMAD3 antibody and then we subjected the ChIPed chromatin by the primary ChIP to reChIP experiments using anti-HIF1A or anti-HIF2A antibody. The reChIPed DNA was submitted to next generation sequencing.
Project description:We performed microarray analysis using differnt prostate cancer cell lines (PC3 and 22RV1) after TNFRSF13B (CD267) knockdown. We reported that TNFRSF13B regulates cell cycle-associated genes and P53 signaling pathway in PC3 and 22RV1 cells.