Project description:Whole-exome sequencing was performed on DNA samples extracted from eight patient-derived melanoma cell lines grown in vitro in serum-free EGF/bFGF-containing medium. The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and response to drugs.
Project description:Whole-exome sequencing was performed on DNA sample extracted from one melanoma cell line resistant to vemurafenib (BRAF V600E inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Whole-exome sequencing was performed on DNA samples extracted from seven melanoma cell lines resistant to either vemurafenib (BRAF V600E inhibitor) or trametinib (MEK1/2 inhibitor). The aim of the experiment was to search for genetic alterations responsible for phenotypic diversity of melanoma cell lines reported at the level of cell morphology, activity of signaling pathways essential for melanoma development and progression, and resistance to targeted therapeutics.
Project description:Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry - Exome sequencing