Project description:Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic and degenerative disease in humans. Here, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B downregulated mTOR activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via the transcription factor TFEB, which increased lysosomal biogenesis and activation of autophagy-initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome population and basic recycling functions in the cell. We used microarrays to explore the gene expression profiles differentially expressed in bone marrow-derived macrophages (BMDM) isolated from cathepsin B-/- and wild-type mice.
Project description:Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic and degenerative disease in humans. Here, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida. Genetic deletion or pharmacological inhibition of cathepsin B downregulated mTOR activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via the transcription factor TFEB, which increased lysosomal biogenesis and activation of autophagy-initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome population and basic recycling functions in the cell.
Project description:Inflammasomes are critical for mounting host defense against pathogens. The molecular mechanisms that control activation of the AIM2 inflammasome in response to different cytosolic pathogens remain unclear. Here we found that the transcription factor IRF1 was required for the activation of the AIM2 inflammasome during infection with the Francisella tularensis subspecies novicida (F. novicida), whereas engagement of the AIM2 inflammasome by mouse cytomegalovirus (MCMV) or transfected double-stranded DNA did not require IRF1. Infection of F. novicida detected by the DNA sensor cGAS and its adaptor STING induced type I interferon-dependent expression of IRF1, which drove the expression of guanylate-binding proteins (GBPs); this led to intracellular killing of bacteria and DNA release. Our results reveal a specific requirement for IRF1 and GBPs in the liberation of DNA for AIM2 sensing depending on the pathogen encountered by the cell. We used microarrays to explore the gene expression profiles differentially expressed in Francisella-infected bone marrow-derived macrophages (BMDMs) isolated from Irf1-/-, Ifnar1-/-, Aim2-/- and wild-type mice.
Project description:Inflammasomes are critical for mounting host defense against pathogens. The molecular mechanisms that control activation of the AIM2 inflammasome in response to different cytosolic pathogens remain unclear. Here we found that the transcription factor IRF1 was required for the activation of the AIM2 inflammasome during infection with the Francisella tularensis subspecies novicida (F. novicida), whereas engagement of the AIM2 inflammasome by mouse cytomegalovirus (MCMV) or transfected double-stranded DNA did not require IRF1. Infection of F. novicida detected by the DNA sensor cGAS and its adaptor STING induced type I interferon-dependent expression of IRF1, which drove the expression of guanylate-binding proteins (GBPs); this led to intracellular killing of bacteria and DNA release. Our results reveal a specific requirement for IRF1 and GBPs in the liberation of DNA for AIM2 sensing depending on the pathogen encountered by the cell.
Project description:Histone deacetylases (HDACs), as important enzymes regulating acetylation, participate in a series of cell physiological process. Here we reported that HDAC3-deficient macrophages had elevated expression of multiple cathepsins and over-expressed cathepsins such as cathepsin B (CTSB) caused remarkable degradation of receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIP1), which resulted in reduced TNFα mediated NF-κB activation and inflammatory response. Consistent with these findings, mice with macrophage specific knockout of HDAC3 were impaired in inflammatory response and susceptible to pseudomonas aeruginosa infection. Thus, our studies uncovered important roles of HDAC3 in the regulation of cathepsin-mediated lysosomal degradation and RIP1-mediated inflammatory response in macrophages as well as in host defense against bacterial infection.
Project description:Histone deacetylases (HDACs), as important enzymes regulating acetylation, participate in a series of cell physiological process. Here we reported that HDAC3-deficient macrophages had elevated expression of multiple cathepsins and over-expressed cathepsins such as cathepsin B (CTSB) caused remarkable degradation of receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIP1), which resulted in reduced TNFα mediated NF-κB activation and inflammatory response. Consistent with these findings, mice with macrophage specific knockout of HDAC3 were impaired in inflammatory response and susceptible to pseudomonas aeruginosa infection. Thus, our studies uncovered important roles of HDAC3 in the regulation of cathepsin-mediated lysosomal degradation and RIP1-mediated inflammatory response in macrophages as well as in host defense against bacterial infection.
Project description:Francisella are pathogenic bacteria whose virulence is linked to their ability to replicate within the host cell cytosol. Entry into the macrophage cytosol activates a host protective multimolecular complex called the inflammasome to release the proinflammatory cytokines IL-1 and IL-18 and trigger caspase-1 dependent cell death. Here we show that cytosolic Francisella induce a type I interferon (IFN) response that is essential for caspase-1 activation, inflammasome mediated cell death, and release of IL-1 and IL-18. Extensive type I IFN dependent cell death resulting in macrophage depletion occurs in vivo during Francisella infection. Type I IFN is also necessary for inflammasome activation in response to cytosolic Listeria but not vacuole localized Salmonella or extracellular ATP. These results show the specific connection between type I IFN signaling and inflammasome activation, two sequential events triggered by recognition of cytosolic bacteria. To our knowledge, this is the first example of positive regulation of inflammasome activation. This connection underscores the importance of cytosolic recognition of pathogens and highlights how multiple innate immunity pathways interact before commitment to critical host responses. Keywords: murine macrophage response to Francisella tularensis subspecies novicida infection We analyzed a series of 18 MEEBO arrays on which were hybed RNA randomly amplified from bone marrow derived macrophages infected or not with WT Francisella tularensis subspecies novicida or a the mglA mutant strain GB2.
Project description:These samples are part of an experiment comparing the expression profiles of Francisella tularensis novicida grown in chemically defined medium and bacteria isolated 24 hours post infection of J774 macrophages to identify virulence factors
Project description:Francisella are pathogenic bacteria whose virulence is linked to their ability to replicate within the host cell cytosol. Entry into the macrophage cytosol activates a host protective multimolecular complex called the inflammasome to release the proinflammatory cytokines IL-1 and IL-18 and trigger caspase-1 dependent cell death. Here we show that cytosolic Francisella induce a type I interferon (IFN) response that is essential for caspase-1 activation, inflammasome mediated cell death, and release of IL-1 and IL-18. Extensive type I IFN dependent cell death resulting in macrophage depletion occurs in vivo during Francisella infection. Type I IFN is also necessary for inflammasome activation in response to cytosolic Listeria but not vacuole localized Salmonella or extracellular ATP. These results show the specific connection between type I IFN signaling and inflammasome activation, two sequential events triggered by recognition of cytosolic bacteria. To our knowledge, this is the first example of positive regulation of inflammasome activation. This connection underscores the importance of cytosolic recognition of pathogens and highlights how multiple innate immunity pathways interact before commitment to critical host responses. Keywords: murine macrophage response to Francisella tularensis subspecies novicida infection
Project description:In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demon- strated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity as- says, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides the first evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation.