Project description:Clostridium cellulovorans is among the most promising candidates for consolidated bioprocessing (CBP) of cellulosic biomass to liquid biofuels (e.g. ethanol, butanol). C. cellulovoranscan metabolize all the main plant polysaccharides (i.e. cellulose, hemicellusoses and pectins). Unlike other well established cellulolytic microorganisms, C. cellulovorans most abundant catabolite is butyrate. This attracted attention on this strain as potential butanol producer since most reactions involved in butyrate and butanol synthetic pathway from acetyl-coA are common. Recent studies demonstrated that the introduction of a single heterologous alcohol/aldehyde dehydrogenase can significantly divert the branching-point intermediate, i.e. butyryl-CoA, towards butanol production in this strain. In spite of the potential of C. cellulovorans for application in CBP of plant biomass, engineering its metabolic pathways towards industrial utilization still requires enhanced understanding of its metabolism. Few recent studies aimed at understanding the regulation of C. cellulovorans central carbon metabolism in response to different substrate availability, which seem insufficient for the aforementioned purposes. The present study aimed at improving comprehension of cellulose metabolism in C. cellulovorans by comparing growth kinetics, substrate consumption/product accumulation and whole-cell soluble proteome with those of C. cellulovorans grown on a soluble carbohydrate, i.e. glucose, as the main carbon source. Modulations of the central carbon metabolism in response to changes in the growth substrate were detected, including the regulation of glycolytic enzymes, fermentation pathways and nitrogen assimilation. Our data suggest that a higher energy expenditure occurs in cellulose-grown C. cellulovorans which induces up-regulation of ATP synthetic pathways, e.g. acetate production and ATP synthase.
Project description:Transcription of the cellulosomal cellulase/hemicellulase genes of Clostridium cellulovorans has been investigated by Northern blot, reverse transcriptase PCR (RT-PCR), primer extension, and S1 nuclease analysis. Northern hybridizations revealed that the cellulosomal cbpA gene cluster is transcribed as polycistronic mRNAs of 8 and 12 kb. The 8-kb mRNA coded for cbpA and exgS, and the 12-kb mRNA coded for cbpA, exgS, engH, and engK. The sizes of the mRNAs were about 3 kb for engE, 1.8 kb for manA, 2.7 kb for xynA, and 4 kb for pelA, indicating monocistronic transcription of these genes. Primer extension and S1 nuclease analysis of C. cellulovorans RNA showed that the transcriptional start sites of cbpA, engE, manA, and hbpA were located 233, 97, 64, and 61 bp upstream from the first nucleotide of each of the respective translation initiation codons. Alignment of the cbpA, engE, manA, and hbpA promoter regions provided evidence for highly conserved sequences that exhibited strong similarity to the sigma(A) consensus promoter sequences of gram-positive bacteria.
Project description:Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Project description:A large gene cluster for the Clostridium cellulovorans cellulosome has been cloned and sequenced upstream and downstream of the cbpA and exgS genes (C.-C. Liu and R. H. Doi, Gene 211:39-47, 1998). Gene walking revealed that the engL gene cluster (Y. Tamaru and R. H. Doi, J. Bacteriol. 182:244-247, 2000) was located downstream of the cbpA-exgS genes. Further DNA sequencing revealed that this cluster contains the genes for the scaffolding protein CbpA, the exoglucanase ExgS, several endoglucanases of family 9, the mannanase ManA, and the hydrophobic protein HbpA containing a surface layer homology domain and a hydrophobic (or cohesin) domain. The sequence of the clustered genes is cbpA-exgS-engH-engK-hbpA-engL-man A-engM-engN and is about 22 kb in length. The engN gene did not have a complete catalytic domain, indicating that engN is a truncated gene. This large gene cluster is flanked at the 5' end by a putative noncellulosomal operon consisting of nifV-orf1-sigX-regA and at the 3' end by noncellulosomal genes with homology to transposase (trp) and malate permease (mle). Since gene clusters for the cellulosome are also found in C. cellulolyticum and C. josui, they seem to be typical of mesophilic clostridia, indicating that the large gene clusters may arise from a common ancestor with some evolutionary modifications.
Project description:Exoglucanase/cellobiohydrolase (EC 3.2.1.176) hydrolyzes a ?-1,4-glycosidic bond from the reducing end of cellulose and releases cellobiose as the major product. Three complex crystal structures of the glycosyl hydrolase 48 (GH48) cellobiohydrolase S (ExgS) from Clostridium cellulovorans with cellobiose, cellotetraose and triethylene glycol molecules were solved. The product cellobiose occupies subsites +1 and +2 in the open active-site cleft of the enzyme-cellotetraose complex structure, indicating an enzymatic hydrolysis function. Moreover, three triethylene glycol molecules and one pentaethylene glycol molecule are located at active-site subsites -2 to -6 in the structure of the ExgS-triethylene glycol complex shown here. Modelling of glucose into subsite -1 in the active site of the ExgS-cellobiose structure revealed that Glu50 acts as a proton donor and Asp222 plays a nucleophilic role.
Project description:The enzymatic degradation of cellulose is a critical step in the biological conversion of plant biomass into an abundant renewable energy source. An understanding of the structural and dynamic features that cellulases utilize to bind a single strand of crystalline cellulose and hydrolyze the ?-1,4-glycosidic bonds of cellulose to produce fermentable sugars would greatly facilitate the engineering of improved cellulases for the large-scale conversion of plant biomass. Endoglucanase D (EngD) from Clostridium cellulovorans is a modular enzyme comprising an N-terminal catalytic domain and a C-terminal carbohydrate-binding module, which is attached via a flexible linker. Here, we present the 2.1-Å-resolution crystal structures of full-length EngD with and without cellotriose bound, solution small-angle X-ray scattering (SAXS) studies of the full-length enzyme, the characterization of the active cleft glucose binding subsites, and substrate specificity of EngD on soluble and insoluble polymeric carbohydrates. SAXS data support a model in which the linker is flexible, allowing EngD to adopt an extended conformation in solution. The cellotriose-bound EngD structure revealed an extended active-site cleft that contains seven glucose-binding subsites, but unlike the majority of structurally determined endocellulases, the active-site cleft of EngD is partially enclosed by Trp162 and Tyr232. EngD variants, which lack Trp162, showed a significant reduction in activity and an alteration in the distribution of cellohexaose degradation products, suggesting that Trp162 plays a direct role in substrate binding.
Project description:The cellulosome is a complex of cellulosomal proteins bound to scaffolding proteins. This complex is considered the most efficient system for cellulose degradation. Clostridium cellulovorans, which is known to produce cellulosomes, changes the composition of its cellulosomes depending on the growth substrates. However, studies have investigated only cellulosomal proteins; profile changes in noncellulosomal proteins have rarely been examined. In this study, we performed a quantitative proteome analysis of the whole exoproteome of C. cellulovorans, including cellulosomal and noncellulosomal proteins, to illustrate how various substrates are efficiently degraded. C. cellulovorans was cultured with cellobiose, xylan, pectin, or phosphoric acid-swollen cellulose (PASC) as the sole carbon source. PASC was used as a cellulose substrate for more accurate quantitative analysis. Using an isobaric tag method and a liquid chromatography mass spectrometer equipped with a long monolithic silica capillary column, 639 proteins were identified and quantified in all 4 samples. Among these, 79 proteins were involved in saccharification, including 35 cellulosomal and 44 noncellulosomal proteins. We compared protein abundance by spectral count and found that cellulosomal proteins were more abundant than noncellulosomal proteins. Next, we focused on the fold change of the proteins depending on the growth substrates. Drastic changes were observed mainly among the noncellulosomal proteins. These results indicate that cellulosomal proteins were primarily produced to efficiently degrade any substrate and that noncellulosomal proteins were specifically produced to optimize the degradation of a particular substrate. This study highlights the importance of noncellulosomal proteins as well as cellulosomes for the efficient degradation of various substrates.