Project description:Mesenchymal stem/stromal cells (MSCs) were harvested from subcutaneous adipose tissue of patients with obesity or healthy controls and expanded for 3-4 passages, and 5hmC profiles were examined through hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). We hypothesized that obesity and cardiovascular risk factors induce functionally-relevant, locus-specific changes in overall exonic coverage of 5hmC in human adipose-derived MSCs.
Project description:Diabetes and obesity are widespread diseases with signifciant socioeconomic implications. We used three different types of human adipose tissue (epigastric, visceral, and subcutaneous) in order to determine differences in global gene expression between these adipose depots in severely obese patients. In this dataset, we include the expression data obtained from three types of adipose tissue; epigastric, subcutaneous, and visceral all obtained through open gastric bypass surgery. 18 total samples were analyzed. Tissues were paired together to run on one genechip, with three pairs of epigastric, three pairs of subcutaneous, and three pairs of visceral were ran on nine genechips. Comparisons of gene expression in the form of fold changes between pairs of adipose types (i.e., subcutaneous/epigastric, visceral/epigastric, and subcutaneous/visceral) were completed by Spotfire Analysis.
Project description:Diabetes and obesity are widespread diseases with signifciant socioeconomic implications. We used three different types of human adipose tissue (epigastric, visceral, and subcutaneous) in order to determine differences in global gene expression between these adipose depots in severely obese patients. In this dataset, we include the expression data obtained from three types of adipose tissue; epigastric, subcutaneous, and visceral all obtained through open gastric bypass surgery.
Project description:To investigate the proteomic profiles of paired subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples, as well as their correlations with clinical traits in severely obese patients, and to identify potential serum protein markers associated with tissue expression or metabolic states.
Project description:To investigate the proteomic profiles of paired subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples, as well as their correlations with clinical traits in severely obese patients, and to identify potential serum protein markers associated with tissue expression or metabolic states.
Project description:The aim of this study was to characterize expression profiles of visceral and subcutaneous adipose tissue in children. Adipose tissue samples were collected from children having elective surgery (n=71, [54 boys], 6.0 +- 4.3 years). Affymetrix microarrays (n=20) were performed to characterize the functional profile and identify genes of interest in adipose tissue. Visceral adipose tissue had an overrepresentation of Gene Ontology themes related to immune and inflammatory responses and subcutaneous adipose tissue had an overrepresentation of themes related to adipocyte growth and development. Likewise, qPCR performed in the whole cohort showed a 30-fold increase in haptoglobin (P < 0.005), 7-fold increase in IL-10 (P < 0.001), 8-fold decrease in VEGF (P < 0.01) and a 28-fold decrease in TBOX15 (P < 0.001) in visceral compared to subcutaneous adipose tissue.The inflammatory pattern in visceral adipose tissue may represent an early stage of the adverse effects of this depot, and combined with chronic obesity, may contribute to increased metabolic and cardiovascular risk. 20 human samples from pre-pubertal boys and girls were assessed for differences in expression between subcutaneous (n=15) and visceral fat (n=5), with 1 microarray per subject
Project description:Three different progenitor cell subsets in subcutaneous and visceral adipose tissues derived from 5 obese patients were subjected to AmpliSeq transcriptome profiling. Transcriptomic profiles were analyzed to compare progenitor cell subsets and the impact of subcutaneous and visceral adipose tissue location.
Project description:Genome wide DNA methylation in blood, subcutaneous and omental visceral adipose tissue from two-step surgical approach (N=9) was analysed in patients with severe obesity using Illumina 850K EPIC technology before and after metabolic surgery (Leipzig Obesity BioBank (LOBB) cohort). Additionally, a validation blood cohort of patients with obesity undergoing metabolic surgery was analyzed for results validation.
Project description:The aim of this study was to characterize expression profiles of visceral and subcutaneous adipose tissue in children. Adipose tissue samples were collected from children having elective surgery (n=71, [54 boys], 6.0 +- 4.3 years). Affymetrix microarrays (n=20) were performed to characterize the functional profile and identify genes of interest in adipose tissue. Visceral adipose tissue had an overrepresentation of Gene Ontology themes related to immune and inflammatory responses and subcutaneous adipose tissue had an overrepresentation of themes related to adipocyte growth and development. Likewise, qPCR performed in the whole cohort showed a 30-fold increase in haptoglobin (P < 0.005), 7-fold increase in IL-10 (P < 0.001), 8-fold decrease in VEGF (P < 0.01) and a 28-fold decrease in TBOX15 (P < 0.001) in visceral compared to subcutaneous adipose tissue.The inflammatory pattern in visceral adipose tissue may represent an early stage of the adverse effects of this depot, and combined with chronic obesity, may contribute to increased metabolic and cardiovascular risk.