Project description:Activation of splenic B cells induces formation of a 220kb DNA loop between Em and 3’RR enhancers in the immunoglobulin heavy chain locus (IgH). This DNA loop has been proposed to be necessary for the crucial immune diversification mechanism of IgH class switch recombination, but the factors that control its formation are unknown. We show that conditional deletion of transcription factor YY1 in primary splenic B cells results in a dramatic drop in formation of this DNA loop, as well as immunoglobulin class switch recombination. Reconstitution of YY1-deleted splenic B cells with various YY1 mutants showed that the C-terminal half of YY1 lacking the transactivation domain restored both Em-3’RR DNA loop formation as well as class switch recombination. RNA transcript analyses of YY1 conditional deleted splenic B cells suggest that YY1 does not regulate genes needed for DNA looping or CSR. Our results argue for a direct physical mechanism of YY1 mediating long-distance DNA loops and provide strong evidence of the importance of this DNA loop for class switching. Our results provide foundational mechanistic insight into a crucial immune function.
Project description:Activation of splenic B cells induces formation of a 220kb DNA loop between Em and 3â??RR enhancers in the immunoglobulin heavy chain locus (IgH). This DNA loop has been proposed to be necessary for the crucial immune diversification mechanism of IgH class switch recombination, but the factors that control its formation are unknown. We show that conditional deletion of transcription factor YY1 in primary splenic B cells results in a dramatic drop in formation of this DNA loop, as well as immunoglobulin class switch recombination. Reconstitution of YY1-deleted splenic B cells with various YY1 mutants showed that the C-terminal half of YY1 lacking the transactivation domain restored both Em-3â??RR DNA loop formation as well as class switch recombination. RNA transcript analyses of YY1 conditional deleted splenic B cells suggest that YY1 does not regulate genes needed for DNA looping or CSR. Our results argue for a direct physical mechanism of YY1 mediating long-distance DNA loops and provide strong evidence of the importance of this DNA loop for class switching. Our results provide foundational mechanistic insight into a crucial immune function. Follicular B cells were isolated from the spleens of three C57Bl/6 yy1 fl/fl mice. For each spleen, half the cells received mock treatment and half received TATCRE. The 6 samples were then grown in RPMI medium along with LPS, Il4, OPI, and 20% FBS for 72 hours. The 6 groups of cells were lysed and RNA was isolated for library preparation. Expression differences between Mock and TATCRE treated cells were determined to understand the role of yy1 in B cell class switching.
Project description:Class switch recombination generates antibody distinct isotypes critical to a robust adaptive immune system and defects are associated with auto-immune disorders and lymphomagenesis. Transcription is required during class switch to recruit the cytidine deaminase AID—an essential step for the formation of DNA doublestrand breaks—and strongly induces the formation of R loops within the immunoglobulin heavy chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here we report that cells lacking two enzymes involved in R loop removal— Senataxin and RNase H2—exhibit increased R loop formation and genome instability at the immunoglobulin heavy chain locus without impacting class switch recombination efficiency, transcriptional activity, or AID recruitment. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking Senataxin or RNase H2B alone. We propose that Senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Project description:Antibody class switch recombination (CSR) requires the ligation of DNA breaks in transcribed and juxtaposed donor and acceptor switch (S) sequences (S-S synapsis) spaced 50-200 kb apart within the immunoglobulin heavy chain locus (Igh). CSR is believed to occur via the association of active S regions with the 3’ regulatory region (3’RR) super-enhancer thereby coupling transcription with S-S synapsis. Here, we map the multi-way interactome underlying CSR using Tri-C. Surprisingly, S-S synapsis is strongly associated with the 3` CTCF binding element (3`CBE), but not the 3’RR, a finding also confirmed by Micro-C measurements. Instead, the 3’RR forms a self-interacting domain independently engaging with Igh genes. Additionally, transcription at acceptor S regions creates a topological barrier that insulates S-S synapsis from loop extrusion complexes. Thus, Igh gene activation and S-S synapsis occur via distinct topological states created by the interaction between transcription and the loop extrusion machinery.
Project description:Antibody class switch recombination (CSR) requires the ligation of DNA breaks in transcribed and juxtaposed donor and acceptor switch (S) sequences (S-S synapsis) spaced 50-200 kb apart within the immunoglobulin heavy chain locus (Igh). CSR is believed to occur via the association of active S regions with the 3’ regulatory region (3’RR) super-enhancer thereby coupling transcription with S-S synapsis. Here, we map the multi-way interactome underlying CSR using Tri-C. Surprisingly, S-S synapsis is strongly associated with the 3` CTCF binding element (3`CBE), but not the 3’RR, a finding also confirmed by Micro-C measurements. Instead, the 3’RR forms a self-interacting domain independently engaging with Igh genes. Additionally, transcription at acceptor S regions creates a topological barrier that insulates S-S synapsis from loop extrusion complexes. Thus, Igh gene activation and S-S synapsis occur via distinct topological states created by the interaction between transcription and the loop extrusion machinery.
Project description:Antibody class switch recombination (CSR) requires the ligation of DNA breaks in transcribed and juxtaposed donor and acceptor switch (S) sequences (S-S synapsis) spaced 50-200 kb apart within the immunoglobulin heavy chain locus (Igh). CSR is believed to occur via the association of active S regions with the 3’ regulatory region (3’RR) super-enhancer thereby coupling transcription with S-S synapsis. Here, we map the multi-way interactome underlying CSR using Tri-C. Surprisingly, S-S synapsis is strongly associated with the 3` CTCF binding element (3`CBE), but not the 3’RR, a finding also confirmed by Micro-C measurements. Instead, the 3’RR forms a self-interacting domain independently engaging with Igh genes. Additionally, transcription at acceptor S regions creates a topological barrier that insulates S-S synapsis from loop extrusion complexes. Thus, Igh gene activation and S-S synapsis occur via distinct topological states created by the interaction between transcription and the loop extrusion machinery.
Project description:Antibody class switch recombination (CSR) requires the ligation of DNA breaks in transcribed and juxtaposed donor and acceptor switch (S) sequences (S-S synapsis) spaced 50-200 kb apart within the immunoglobulin heavy chain locus (Igh). CSR is believed to occur via the association of active S regions with the 3’ regulatory region (3’RR) super-enhancer thereby coupling transcription with S-S synapsis. Here, we map the multi-way interactome underlying CSR using Tri-C. Surprisingly, S-S synapsis is strongly associated with the 3` CTCF binding element (3`CBE), but not the 3’RR, a finding also confirmed by Micro-C measurements. Instead, the 3’RR forms a self-interacting domain independently engaging with Igh genes. Additionally, transcription at acceptor S regions creates a topological barrier that insulates S-S synapsis from loop extrusion complexes. Thus, Igh gene activation and S-S synapsis occur via distinct topological states created by the interaction between transcription and the loop extrusion machinery.
Project description:Class Switch Recombination (CSR) is a DNA recombination reaction that diversifies the effector component of antibody responses. CSR is initiated by activation-induced cytidine deaminase (AID), which targets transcriptionally active immunoglobulin heavy chain (Igh) switch donor and acceptor DNA. The 3’ Igh super-enhancer, 3’ Regulatory Region (3’RR), is essential for acceptor region transcription, but how this function is regulated is unknown. Here we identify the chromatin reader ZMYND8 as an essential regulator of the 3’RR and CSR. In B cells, ZMYND8 binds promoters and super-enhancers, including the 3’RR, and controls its activity by modulating the enhancer transcriptional status. In its absence, there is increased 3’RR polymerase loading, and decreased acceptor region transcription and CSR. In addition to CSR, ZMYND8 deficiency impairs somatic hypermutation (SHM) of Igh, which is also dependent on the 3’RR. Thus ZMYND8 controls Igh diversification in mature B lymphocytes by regulating the activity of the 3’ Igh super-enhancer.
Project description:Assembly, expression and maturation of the Immunoglobulin heavy (IgH) chain repertoire necessitates long-range 3D-interactions under regulation by the IgH locus Eµ and 3’ regulatory region (3’RR) super-enhancers. In progenitors, Eµ instrumentally supports VDJ recombination notably towards distal VH genes. In mature cells, the 3’RR first boosts the production of membrane-type IgH transcripts. It later attracts Activation-induced cytidine deaminase at three specific locations: VDJ genes undergoing somatic hypermutation (SHM), switch regions undergoing class switch recombination (CSR), and the 3’RR itself during locus suicide recombination (LSR). In plasma cells devoted to abundant Ig secretion, a late long-range effect is to promote high IgH transcription. The Mediator subunit Med1, which binds super-enhancers and has increased activity after phosphorylation by ERK, was previously attributed a role restricted to class-switched cells. We now show its broader impact on IgH expression, both by promoting recombination of distal VH genes in progenitors and by later supporting SHM. Med1-dependence also marks all long-range functions of the 3’RR, including not only intra- but also trans-chromosomal CSR, LSR, optimal BCR expression and the transcriptional boost featured by plasma cells. Altogether, Med1 appears as a major and specific actor of all the long-range tasks effected by the IgH locus super-enhancers beyond transcription.
Project description:Programmed genetic rearrangements in lymphocytes require transcription at antigen receptor genes to promote accessibility for initiating double-strand break (DSB) formation critical for DNA recombination and repair. Here we show that activated B cells deficient in the PTIP component of the MLL3 (mixed-lineage leukemia 3) /MLL4 complex display impaired histone methylation (H3K4me3) and transcription initiation of downstream switch regions at the immunoglobulin heavy-chain (Igh) locus leading to defective immunoglobulin class-switching. We also show that PTIP accumulation at DSBs contributes to class-switch recombination (CSR) and genome stability independently from Igh switch transcription. These results demonstrate that PTIP promotes specific chromatin changes that control the accessibility of the Igh locus to CSR, and suggest a non-redundant role for the MLL3/MLL4 complex in altering antibody effector function. Genome-wide analysis of histone modifications, PTIP, and Pol II in PTIP-WT and PTIP-KO mouse activated B cells.