Project description:We showed that, male E. pela, despite displaying complete metamorphosis similar to holometabolous insects, formed the sister group to hemimetabolous female E. pela and also clustered with Hemiptera. The gene expression profile and Gene Ontology (GO) analysis revealed that the two sexes engaged in distinct developmental programs. In particular, female development appeared to prioritize the expression of genes related to cellular, metabolic, developmental processes, and anatomical structure formation in nymphs. In contrast, male larval development is characterized by the significant down-regulation of genes involved in chitin, the respiratory system, and neurons. The results also suggest that pathways involved in fat metabolism and storage are differently used between the sexes. Retinal mRNA profiles of male prepulae and male pupae generated by deep sequencing, no replicate, using Illumina
Project description:We showed that, male E. pela, despite displaying complete metamorphosis similar to holometabolous insects, formed the sister group to hemimetabolous female E. pela and also clustered with Hemiptera. The gene expression profile and Gene Ontology (GO) analysis revealed that the two sexes engaged in distinct developmental programs. In particular, female development appeared to prioritize the expression of genes related to cellular, metabolic, developmental processes, and anatomical structure formation in nymphs. In contrast, male larval development is characterized by the significant down-regulation of genes involved in chitin, the respiratory system, and neurons. The results also suggest that pathways involved in fat metabolism and storage are differently used between the sexes.
Project description:Background: MicroRNA (miRNA) and other small regulatory RNAs contribute to the modulation of a large number of cellular processes. We sequenced three total RNA libraries prepared from the whole body, and the anterior and posterior silk glands of Bombyx mori, with a view to expanding the repertoire of silkworm miRNAs and exploring transcriptional differences in miRNAs between segments of the silk gland. Results: With the aid of large-scale Solexa sequencing technology, we validated 244 unique miRNA genes, including 191 novel and 53 previously reported genes, corresponding to 309 loci in the silkworm genome. Interestingly, 24 unique miRNAs were widely conserved from invertebrates to vertebrates; 12 unique ones were limited to invertebrates and 33 were confined to insects; whereas the majority of the newly identified miRNAs were silkworm-specific. We identified 21 clusters and 42 paralogs of miRNAs in the silkworm genome. However, sequence tags showed that paralogs or clusters are not prerequisites for coordinated transcription and accumulation. The majority of silkworm-specific miRNAs are located in transposable elements, and display significant differences in abundance between the anterior and posterior silk glands. Conclusions: Conservative analysis revealed that miRNAs serve as phylogenetic markers and function in evolutionary signaling. The newly identified miRNAs greatly enriched the repertoire of insect miRNAs, and provide insights into miRNA evolution, biogenesis, and expression in insects. The differential expression of miRNAs in the anterior and posterior silk glands supports their involvement as new layers in the regulation of the silkworm silk gland.
Project description:Certain phytophagous insects can induce leaf curling in their host plants that may provide protected and nutrient-rich habitats. However, the mechanisms of this induction remain poorly understood. The cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), is a serious pest of the cassava and causes leaf curling. To reveal the mechanisms of leaf-curl induction, we first inoculated varying numbers of mealybugs in different locations, namely, the apical meristem and the stem, on cassava seedlings. Second, we performed transcriptome analysis using the total RNA extracted from leaves. The results showed that a single insect was able to induce leaf curling, but the intensity and frequency of the leaf curling were positively correlated with the number of insects. Furthermore, the leaf curling occurred when the mealybugs fed on or close to the apical meristem but not when they fed on the stem. Transcriptome analysis identified a total of 3,931 differentially expressed genes (DEGs) from intact plants and the plants inoculated with mealybugs at different time points. GO analysis of the biological processes revealed that the DEGs contained a series of factors for leaf development of the adaxial–abaxial axis, and auxin biosynthesis and polarity. This suggests that alterations in these functions may cause leaf curling.
Project description:N-glycosylation is one of the most abundant and conserved protein modifications in eukaryotes. This modification serves various important functions, such as protein folding and cellular attachment, but also modulation of a protein’s function. Recently, it has been shown that N-glycosylation of proteins plays a vital role in insect development and survival, which makes it an interesting target for pest control. Despite the importance of protein N-glycosylation in insects, not much is known about insect N-glycoproteomes. Here, we report on the N-glycoproteomes of three major pest insects spanning different insect orders; Drosophila melanogaster (Diptera), Tribolium castaneum (Coleoptera) and Acyrthosiphon pisum (Hemiptera). The number of identified N-glycosylation sites ranged from 889 in T. castaneum, to 941 in D. melanogaster and 1,338 in A. pisum. Comparison between the different insect species revealed both conserved and species-specific glycoproteins. The functionality of the insect glycoproteins together with the conservation of the N-glycosites throughout evolution are discussed. This information can help in the elaboration of novel pest insect control strategies based on interference in insect glycosylation.
Project description:Background: MicroRNA (miRNA) and other small regulatory RNAs contribute to the modulation of a large number of cellular processes. We sequenced three total RNA libraries prepared from the whole body, and the anterior and posterior silk glands of Bombyx mori, with a view to expanding the repertoire of silkworm miRNAs and exploring transcriptional differences in miRNAs between segments of the silk gland. Results: With the aid of large-scale Solexa sequencing technology, we validated 244 unique miRNA genes, including 191 novel and 53 previously reported genes, corresponding to 309 loci in the silkworm genome. Interestingly, 24 unique miRNAs were widely conserved from invertebrates to vertebrates; 12 unique ones were limited to invertebrates and 33 were confined to insects; whereas the majority of the newly identified miRNAs were silkworm-specific. We identified 21 clusters and 42 paralogs of miRNAs in the silkworm genome. However, sequence tags showed that paralogs or clusters are not prerequisites for coordinated transcription and accumulation. The majority of silkworm-specific miRNAs are located in transposable elements, and display significant differences in abundance between the anterior and posterior silk glands. Conclusions: Conservative analysis revealed that miRNAs serve as phylogenetic markers and function in evolutionary signaling. The newly identified miRNAs greatly enriched the repertoire of insect miRNAs, and provide insights into miRNA evolution, biogenesis, and expression in insects. The differential expression of miRNAs in the anterior and posterior silk glands supports their involvement as new layers in the regulation of the silkworm silk gland. Sequencing three total RNA pools of the whole silkworm body from 5th-instar day-3 larvae, and anterior and posterior silkworm silk glands, using the latest sequencing Solexa technology
Project description:Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here, we report a brain cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders’ web-building and hunting behavior. Our results provide key sources for understanding the evolution of behavior in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviors.
Project description:Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families.