Project description:ngs2015_05_high_temperature_root-high temp wt - characterize changes in root gene expression associated with plant growth at higher temperature - plants were grown at 21°C or 26°C, 16h light (90µE)/8h dark for 10 days before harveting roots.
Project description:Plant roots located in the upper soil layers are prone to experience high temperatures. To gain insight into the effect of high temperature on root development and functioning, we exposed five-day-old Arabidopsis thaliana seedlings grown on agar plates to 30 °C for 48 hours, and compared the gene expression profile in the root tip with that from seedlings that remained at 22 °C.
Project description:Expression profiles of MicroRNA and SiRNA of Arabidopsis thaliana Col-0 and transgenic plants with constitutive expression of the chimeric receptors NRG1 grown at different temperature To reveal the underlying molecular mechanism of de-cosuppression with memory by high temperature in Arabidopsis, we performed the expression profiles of microRNA and SiRNA in transgenic plants with constitutive expression of the chimeric receptors NRG1 and wide type Col-0 grown at different temperature using the Custom LC Sciences Arabidopsis microRNA and SiRNA array. Keywords: high temperature, de-cosuppression, MicroRNA, SiRNA
Project description:The increasing ambient temperature significantly impacts plant growth, development, and reproduction. Uncovering the temperature-regulating mechanisms in plants is of high importance, not only for boosting our plant biology knowledge but also for assisting plant breeders in improving plant resilience to these stress conditions. Numerous studies on the molecular mechanisms by which plants regulate temperature responses revealed that plants employ distinct transcription factors to regulate thermomorphogenesis specific to each tissue type. A significant discovery in this field was the identification of PHYTOCHROME-INTERACTING FACTORs (PIFs) as key regulators of thermomorphogenesis during vegetative growth. PIF4, a regulator of auxin-mediated signaling pathways, is crucial in controlling high-temperature responses. In this study, we screened the temperature responses of the wild type and several PhyB-PIF4 pathway Arabidopsis mutant lines in combined and integrative phenotyping platforms for root in soil, shoot, inflorescence, and seed. We demonstrated that high ambient temperature differentially impacts vegetative and reproductive organs through this pathway. Suppression of the PhyB-PIF4 components mimics the response to a high ambient temperature in wild-type plants. We also identified correlative responses to high ambient temperature between shoot and root tissues. This integrative and automated phenotyping was complemented by monitoring the changes in transcript levels in reproductive organs. Transcriptomic profiling of the pistils from plants grown under high ambient temperature identified key elements that may provide clues to the molecular mechanisms behind temperature-induced reduced fertilization rate, such as a downregulation of auxin metabolism, upregulation of genes involved auxin signalling, miRNA156 and miRN160 pathways, pollen tube attractants.