Project description:Primary SCEC is a rare malignancy without established treatment strategy. Although previous studies suggested that there were similarities between SCEC and SCLC in clinical manifestation and pathological morphology, genetic studies on this highly malignant tumour remains sparse. This study was designed to investigate the copy number variations (CNVs) of SCEC.
Project description:This SuperSeries is composed of the following subset Series: GSE25102: Illumina SNP-array data for 2 ETV6/RUNX1-positive Acute Lymphoblastic Leukemia samples and corresponding normal samples GSE25116: Affymetrix SNP-array data for 2 ETV6/RUNX1-positive Acute Lymphoblastic Leukemia samples and corresponding normal samples Refer to individual Series
Project description:Parallel aSNP and aCGH analyses were performed on 22 samples from MDS patients with a normal karyotype. 55 overlapping alterations, most of these corresponding to CNVs were identified with both methods. Putative tumour specific imbalances were found with both methods in three cases, a deletion of TET2, a larger deletion containing DNMT3A and one complex molecular karyotype. In two cases putative tumour specific imbalances were only seen with aCGH: a 16p deletion in a low number of cells and a small homozygous deletion in WWOX. Telomeric UPDs were only detected with aSNP in two cases: one affecting chromosome 3q and in the other, two UPD regions were present on 4q and 5p. In total, putative relevant tumour specific genomic alterations were found in seven cases (32%). Three small aberrations only detected by aCGH were present in T-cells, suggestive of germ line alterations which may confer a risk for MDS development. This part contains the aCGH analyses, for aSNP see GSE49004.
Project description:67 tumor samples were aCGH profiled in order to obtain frequencies of recurrent copy number alterations intended to posterior correlations with clinical data. 16 cell lines were characterized as well.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL. Illumina SNP-array genotyping was performed according to the manufacturer's directions on DNA extracted from 2 leukemic bone marrow samples and two corresponding normal blood samples. The genotype data from the arrays were used for quality assesment of genotype data from high throughput sequencing.
Project description:The total protein expression level of 11 paired human normal, human lung cancer samples and correspoding mouse xenograft samples were analyzed by LC-MS/MS. These protein expression data were than compared with corresponding DNA copy number changes and mRNA expression level changes among these samples.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.
Project description:Acute lymphoblastic leukemia (ALL), the most common malignant disorder in childhood, is typically associated with numerical chromosomal aberrations, fusion genes or small focal deletions, thought to represent important pathogenetic events in the development of the leukemia. Mutations, such as single nucleotide changes, have also been reported in childhood ALL, but these have only been studied by sequencing a small number of candidate genes. Herein, we report the first unbiased sequencing of the whole exome of two cases of pediatric ALL carrying the ETV6/RUNX1 (TEL/AML1) fusion gene (the most common genetic subtype) and corresponding normal samples. A total of 14 somatic mutations were identified, including four and seven protein-altering nucleotide substitutions in each ALL. Twelve mutations (86%) occurred in genes previously described to be mutated in other types of cancer, but none was found to be recurrent in an extended series of 29 ETV6/RUNX1-positive ALLs. The number of single nucleotide mutations was similar to the number of copy number alterations as detected by single nucleotide polymorphism arrays. Although the true pathogenetic significance of the mutations must await future functional evaluations, this study provides a first estimate of the mutational burden at the genetic level of t(12;21)-positive childhood ALL.