Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.
Project description:Paddy rice with husk can be availbale for chicken dietary resource instead of yellow corn. Ingestion of paddy rice potentially affects on gastrointestinal physiology and function including digestion/absorption of nutrients and gut barrier function such as mucosal immunity, but the details of changes is unknown. To obtain insight into the physiological modifications in the small intestine of chickens fed paddy rice, we conducted a comprehensive analysis of gene expression in small intestine by DNA microarray. In the paddy rice group, a total of 120 genes were elevated >1.5-fold in the paddy rice group, whereas a total of 159 genes were diminished < 1.5-fold. Remarkably, the gene expression levels of IGHA (immunoglobulin heavy chain α), IGJ (immunoglobulin J chain), and IGLL1 (immunoglobulin light chain λ chain region), which constitute immunoglobulin A, decreased 3 to 10 times in the paddy rice group.
Project description:Infections due to Pseudomonas fulva remain a rare but emerging concern. A case of ventriculitis due to Enterobacter cloacae and Pseudomonas fulva following placement of an external ventricular drain is described. Similar to other reports, the organism was initially misidentified as Pseudomonas putida. The infection was successfully treated with levofloxacin.
Project description:Pseudomonas fulva has not yet been isolated from humans as a pathogen. Herein, we report the first case of P. fulva bacteremia in a patient hospitalized due to trauma. The species was identified using biochemical and molecular genetic analyses of the 16S rRNA, gyrB, rpoB, and rpoD genes.
Project description:Time-course transcriptional profiling of rice leaf in the field in 2009. This experiment was performed to validate the results of field transcriptomic modeling. Using 461 field transcriptome data obtained in 2008 (GSE36040; GSE36042; GSE36043; GSE36044; GSE18685) and the corresponding meteorologicla dara, we perfomred statistical modeling of transcriptome. Rice leaves (Norin8 vs. osgi) in the paddy field were collected on Aug. 10 - 12, 24 - 25, 31, Oct. 8 - 9 in 2009.
Project description:Rice grown in paddy fields prefers to use ammonium ions as a major source of inorganic nitrogen. Glutamine synthetase (GS) catalyzes the conversion of ammonium ions to glutamine. In three cytosolic GS in rice, OsGS1;1 has the critical role for normal growth and grain filling. To understand a role of GS1;1, we performed transcriptional profiling of wild type Nipponbare and GS1;1 mutant plants in seedling using the Agilent Rice Oligo Microarray.
Project description:Rice anthers at the anthesis stage were collected from the wild type (Dongjin cultivar) and far1-1 mutant grown in the paddy field located in the KyungHee University. The collected samples were immediately frozen with liquid nitrogen. RNA from these samples was extracted with RNeasy plant mini kit according to the manufacture's documentation.
Project description:Macronutrients are pivotal elements for proper plant growth and development. We performed microarray analysis of rice leaves under nitrogen (N), phosphorus (P), and potassium (K) deficiency conditions in paddy field to obtain a global view of gene regulations associated with plant response to essential nutrients.