Project description:Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM2.5 and PM10 significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
| phs001260 | dbGaP
Project description:Antibiotic resistance genes in sewage discharge basins
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:Integrons are genetic elements that enable bacterial adaptation by collecting new genes encoded in integron cassettes (ICs) to create a reservoir of adaptive functions. These cassettes typically lack their own promoters and rely on the integron platform for their expression. Integrons, well-known for spreading antibiotic resistance genes in clinically relevant Gram-negative species, include Mobile Integrons (MIs), that transport over 170 resistance genes. In contrast, Sedentary Chromosomal Integrons (SCIs), ubiquitous in Vibrio species, are primarily found within bacterial chromosomes. However, their functions are not related to antimicrobial resistance and are largely unexplored. SCIs, typified by the Superintegron (SI) in Vibrio cholerae, represent ancient and highly variable regions in bacterial genomes. The SI is extensive, housing 179 integron cassettes, mostly with unknown functions. Although 19 cassettes encode toxin-antitoxin (TA) systems, which stabilize the array, the intricacies of the SI are challenging to study due to its size and unique integrase. To investigate the SI's impact on V. cholerae, we developed the SeqDelTA approach, enabling the gradual deletion of the SI. This deletion facilitates the use of standard genetic tools without SI interference. Our in-depth analysis of the resulting ∆SI strain, covering various aspects, demonstrated no significant alterations in V. cholerae's physiology. Despite their extended coevolution, SCIs appear to be genetically isolated from the host genome.
2023-11-23 | GSE247496 | GEO
Project description:Metagenomic profiling of antibiotic resistance genes and mobile genetic elements
| PRJNA666519 | ENA
Project description:Study on antibiotic resistance genes in water reservoir sediments.
Project description:The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages. As a consequence, not only phage genes are transferred, but also genes that have no particular function in the phage's lysogenic cycle. If they provide benefits to the phage's host, such genes are referred to as ‘morons’. The present study was aimed at characterizing a set of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional antibiotic resistance phenotypes from patients in a neonatal ward. Unexpectedly, these analyses unveiled the existence of a novel family of closely related MGIs in Enterobacteriaceae. The respective MGI from E. cloacae was named MIR17-GI. Importantly, our observations show that MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin resistance amongst Enterobacteriaceae. The discovery of a novel family of MGIs spreading ‘cephalosporinase morons’ is of high clinical relevance, because high-level cephalosporin resistance has serious implications for the treatment of patients with Enterobacteriaceal infections.
2018-08-21 | PXD007113 | Pride
Project description:Antibiotic resistance in opportunistic pathogens from isolated from hospital sewage and wastewater treatment plants
Project description:Antibiotic resistance associated with the expression of the clinically significant carbapenemases, IMP, KPC, and NDM and OXA-48 in Enterobacteriaceae is emerging as a worldwide calamity to health care. In Australia, IMP-producing Enterobacteriaceae is the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such carbapenemase-producing Enterobacteriaceae (CPE) are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli, producing either NDM, IMP or KPC type carbapenemase were included in this study, and their proteomes were analysed in growth conditions with or without meropenem.