Project description:Gene expression profile from brown adipose tissues of Prdm16 knockout and wile type mice. Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development.
Project description:Gene expression profile from brown adipose tissues of Prdm16 knockout and wile type mice. Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. Brown adipose tissues were collected from Prdm16 knockout and wiletype mice with 4 biological replicates per condition. Experiment was done in two separate batch for 6-week-old and 11-month-old. Extracted RNA was hybridized to Agilent two-color arrays.
Project description:The interscapular brown adipose tissue (BAT) depots of adult male and female C57BL/6J mice, housed at 22 °C, were analyzed to identify sex differences in the BAT transcriptome at basal housing conditions.
Project description:Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (Ucp1). Previously, we reported that the TATA-binding protein Associated Factor 7L (Taf7l) is an important regulator of white adipose tissue (WAT) differentiation. Here, we show that Taf7l also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, Taf7l containing TFIID complexes associate with PPAR to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that presence of the tissue-specific Taf7l subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification. mRNA-seq expression profiling wild type and Taf7l knockout interscapular brown adipose tissue (BAT)
Project description:Brown adipose tissue (BAT) in rabbits undergoes rapid involution, i.e. transforming to white adipose tissue (WAT), similarly to what happens in humans. We aim to profile the transcriptomic changes of total BAT and the stromal vascular fraction (SVF) that contains adipocyte progenitors at the global and single-cell levels.
Project description:BAT obtained from embryos at E14.5, E15.5 or E16.5 of C57Bl6J mice used to prepare RNA which was then processed for analysis using MoGene-2_1-st Affymetrix microarrays according to standard procedures.
Project description:One-pot enrichment and label-free quantification of protein acetylation and protein succinylation in mouse brown adipose tissue (BAT) in response to cold-acclimation and/or BAT-specific Sirt5 KO.
Project description:Compare miRNA expression profiles in epididymal white adipose tissue (WAT), interscapular brown adipose tissue (BAT) and skeletal muscle from wild-type C57BL/6J mice
Project description:Case story. A patient with massive infiltration of the visceral adipose tissue depot by BAT in a patient with a catecholamine secreting paraganglioma. BAT tissue was identified by protein expression of UCP1 (western blotting and immunostaining) The goal of the study is to identify patterns of gene expression in BAT containing visceral fat compared to the patient's own subcutanous fat which did not express BAT. For comparison a pool of mRNA isolated from visceral fat from obese subjects was used.
Project description:Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (Ucp1). Previously, we reported that the TATA-binding protein Associated Factor 7L (Taf7l) is an important regulator of white adipose tissue (WAT) differentiation. Here, we show that Taf7l also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, Taf7l containing TFIID complexes associate with PPAR to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that presence of the tissue-specific Taf7l subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.