Project description:Genome-wide analysis of skin color-related lncRNA and mRNA expression in Koi carp, Cyprinus carpio L. LncRNAs information linked to fish skin color regulation is over-limited. In this study, Illumina sequencing and bioinformatics were primarily conducted on black, white and red skin colors of Koi carp. A total of 590,415,050 clean reads, 446,614 putative transcripts, 4,252 known and 72,907 novel lncRNAs were simultaneously obtained, respectively. Out of these genes, 92 significant differentially expressed lncRNAs and 722 mRNAs were excavated. Ccr_lnc5622441, Ccr_lnc765201 were found up-regulated in black and red skins; Ccr_lnc14074601 were up-regulated in white skin; and premelanosome proteins a (Pmela), tyrosinase (Tyr) were up-regulated in black skin, etc. Quantitative real-time PCR (qRT-PCR) further validated 12 differentially expressed genes were consistent with RNA-seq. Moreover, 70 lncRNAs on 107 target mRNAs in cis and 79 lncRNAs on 41,625 target mRNAs in trans were investigated, the networks revealed one lncRNAs can connected with numerous mRNAs, vice versa. These findings broadened the lncRNAs landscape of skin colors and provided new insights into the mechanisms underlying lncRNAs mediated pigmentation and differentiation in Koi carp.
Project description:BACKGROUND:Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n?=?100) (?)?×?blunt snout bream (Megalobrama amblycephala, 2n?=?48) (?), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. RESULT:In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (?)?×?blunt snout bream (?). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. CONCLUSIONS:Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.