Project description:This SuperSeries is composed of the following subset Series: GSE29112: The transcriptional program controlled by Runx1 during early hematopoietic development (expression data) GSE29514: The transcriptional program controlled by Runx1 during early hematopoietic development (ChIP-seq data) Refer to individual Series
Project description:Transcription factors have long been recognised as powerful regulators of mammalian development, yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches across four ES-cell-derived populations of increasing haematopoietic potential to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that core regulatory circuits are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both early and late circuits in fully specified blood cells, but initiation of CD41 expression critically depends on a later subcircuit driven by Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulatory circuits is likely to represent a design principle widely applicable to the transcriptional control of mammalian development. 4 samples: 3 samples of Runx1 transcription factor ChIP from the Runx1+/VE-cadherin+/CD41+ population, Runx1+/VE-cadherin+/CD41- population and Runx1+/VE-cadherin-/CD41+ population, and 1 Control (IgG).
Project description:The t(12;21) chromosomal translocation, targeting the gene encoding the RUNX1 transcription factor, is observed in 25% of pediatric acute lymphoblastic leukemia (ALL) and is an initiating event in the disease. To elucidate the mechanism by which RUNX1 disruption initiates leukemogenesis, we investigated its normal role in murine B-cell development. Gene expression analysis and genome-wide Runx1-occupancy studies support the hypothesis that Runx1 reinforces the transcription factor network in B-cell progenitors governing early B-cell survival and development . ChIP-seq experiments were performed in the proB-cell line BMiFLT3(15-3), stably transduced with the transcription factor Runx1, to identify Runx1-bound sites in early B-cell progenitors.
Project description:Chromatin immunoprecipitation with specific isolation of chromatin associated proteins (ChIP-SICAP) was used to identify chromatin-bound interactors of CEBPA and RUNX1 in the 3q-rearranged human myeloid leukemia cell line MUTZ-3.
Project description:Estrogen Receptor alpha (ERα) is a key driver of most breast cancers, and it is the target of endocrine therapies used in the clinic to treat women with ERα positive (ER+) breast cancer. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used to pull down the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Project description:RUNX1 and ETV6-RUNX1 possess the same DNA-binding runt domain and are therefore expected to bind to canonical RUNX motifs. As the ETV6-RUNX1 fusion arises in the context of native RUNX1 expression, and since RUNX1 is retained or amplified in B-ALL, the two proteins are likely to compete for the same target sites. To assess this, we performed RUNX1 ChIP-seq in the presence of exogenous ETV6-RUNX1 (or non DNA binding ETV6-RUNX1-R139G) and the reciprocal experiment: ETV6-RUNX1 ChIP (using a V5 tag) in the presence of exogenous RUNX1 or vector control.
Project description:RUNX1 transcription factor (TF) is a key regulator of megakaryocytic development and when mutated is associated with familial platelet disorder and predisposition to acute myeloid leukemia (FPD-AML). We used mice lacking Runx1 specifically in megakaryocytes (MKs) to characterize the Runx1-mediated transcriptional program during advanced stages of MK differentiation. Gene expression and chromatin-immunoprecipitation-sequencing (ChIP-seq) of Runx1 and p300 identified functional Runx1-bound MK enhancers. Runx1/p300 co-bound regions showed significant enrichment in genes important for MK and platelet homeostasis. Runx1-bound regions were highly enriched in RUNX and ETS motifs and to a lesser extent in GATA motif. The data provides the first example of genome-wide Runx1/p300 occupancy in maturating FL-MK, unravels the Runx1-regulated program controlling MK maturation in vivo and identifies its bona fide regulated genes. It advances our understanding of the molecular events that upon mutations in RUNX1 lead to the predisposition to familial platelet disorders and FPD-AML. Examination of RUNX1 and P300 binding in WT mouse megakaryoctye cells using ChIP-Seq. The supplementary 'GSE45372_PeakList.txt' file includes a list of regions identified as binding for P300 or RUNX1 or both.
Project description:Chromatin immunoprecipitation with specific isolation of chromatin associated proteins (ChIP-SICAP) was used to identify chromatin-bound interactors of CEBPA and RUNX1 in the 3q-rearranged human myeloid leukemia cell line MOLM-1.