Project description:Staphylococcus aureus clonal complex 398 (CC398) isolates colonize livestock and can spread to human contacts. Genetic analysis of isolates epidemiologically associated with human-to-human, but not livestock, transmission in multiple countries and continents identified a common clade that was negative for tet(M) and positive for bacteriophage 3. Another group of human-to-human-transmitted isolates belonged to the common livestock-associated clade but had acquired a unique φ7 bacteriophage. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-124]
Project description:Investigation of baseline transcription activity of two different clinical isolates of Staphylococcus aureus with two different susceptibility levels to the antibiotics Vancomycin and Daptomycin.
Project description:The Staphylococcus aureus Panton Valentine leukocidin (PVL) is a pore-forming toxin secreted by strains epidemiologically associated with the current outbreak of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and with the often lethal necrotizing pneumonia. To investigate the role of PVL in pulmonary disease, we tested the pathogenicity of clinical isolates, isogenic PVL-negative and PVL-positive S. aureus strains, as well as purified PVL, in a mouse acute pneumonia model. Here we show that PVL is sufficient to cause pneumonia and that the expression of this leukotoxin induces global changes in transcriptional levels of genes encoding secreted and cell-wall-anchored staphylococcal proteins, including the lung inflammatory factor staphylococcal protein A (Spa). Keywords: comparative transcription profile in the presence or absence of PVL toxin
Project description:Staphylococcus aureus (S. aureus) is a known pathogen able to infect humans and animals. Human S. aureus isolates are often associated with carriage of Sa3int prophages combined with loss of beta-hemolysin production due to gene disruption, whereas animal isolates are positive for beta-hemolysin associated with absence of Sa3int prophages. Sa3int prophages are known to contribute to staphylococcal fitness and virulence in human host by providing human-specific virulence factors encoded on the prophage genome. Strain-specific differences in regard to phage transfer, lysogenization and induction are attributable to yet unknown staphylococcal factors specifically influencing prophage gene expression. In this work we used tagRNA-sequencing approach to specifically search for these unknown host factors and differences in prophage gene expression. For this purpose, we established a workflow revealing the first direct comparison for differential gene expression analysis on two distinct single-lysogenic S. aureus isolates. Further, global gene expression patterns were investigated in two S. aureus isolates upon mitomycin C treatment and compared to uninduced conditions. This provides new insights into the tightly linked host-phage interaction network.