Project description:ABA regulates in plants a wide range of developmental events, mediates responses to environmental stress and is necessary to proceed through seed maturation and to acquire desiccation tolerance and dormancy. Immuno-modulation is a suitable means to study ABA functions during seed maturation. Anti-ABA single chain antibody was expressed in pea seed driving LeB4-promoter (Saalbach et al., High-level expression of a single chain Fv fragment (scFv) antibody in transgenic pea seeds J. Plant Physiol. 2001 158: 529-533), which produced only a weak phenotype with slightly decreased seed weight, globulin/albumin and total nitrogen content (aABA line 16 cultivar Erbi). In another approach with a stronger, improved USP-promoter used to express the anti-ABA antibody in pea seeds a different phenotype emerged (aABA line 7, cultivar Eifel). In this line individual seed weight increased by 20 to 30% together with higher globulin and albumin content. To dissect the aABA phenotype at the molecular level, a search for genes with differential expression patterns in transgenic plant versus wild type seeds has been performed using 6k-oligo microarray analysis. cDNA probes were prepared from RNA isolated from embryo of developing seeds of wild type (12, 18, and 22 DAP) and transgenic aABA plants (12, 18, and 22 DAP), which correspond to the transition phase of seed development, and 6k-oligo microarray.
Project description:camta3-1, camta3-2 and WT microarray experiments, statistical and bioinformatics analysis Keywords: expression analysis; mutant versus wild type comparison
Project description:The MYB gene family encodes transcription factors with a diverse range of functions in Arabidopsis. This study demonstrated that MYB5, which is expressed in trichomes and seeds, plays a central role in trichome and seed development. A microarray analysis of myb5 seeds identified other members of the MYB5 regulatory network.
Project description:Comparison of Arabidopsis wild-type developing seeds grown under sulfur-deficient condition vs Arabidopsis wild-type developing seeds grown under control condition.
Project description:Microarray expression profiling was used to identify genes expressed in developing soybean (Glycine max) seeds that are controlled by the circadian clock. Plants with developing seeds were entrained to 12hour light: 12 hour dark cycles and sampled in constant light conditions.
Project description:Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols, however total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acteate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. Addition of castor phospholipid:diacylglycerol acyltransferase (PDAT) increased hydroxylated fatty acid content of the seed oil, increased the rate of fatty acid synthesis, and mostly restored seed oil levels. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. Transcript profiles of Arabidopsis developing seeds of three lines, at three stages of development were generated by deep sequencing, in triplicate, using Illumina.
Project description:Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols, however total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acteate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. Addition of castor phospholipid:diacylglycerol acyltransferase (PDAT) increased hydroxylated fatty acid content of the seed oil, increased the rate of fatty acid synthesis, and mostly restored seed oil levels. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants.
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. A total of 62 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally, 32 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. The contigs from the assembled mRNA-seq data allowed for a search for putative new precursors and led to the identification of 13 novel miRNA families. Differential expression between the libraries was determined through a statistical analysis of normalized miRNA reads and revealed several miRNAs and isomiRNAs that were more abundant during the developing stages. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comprehensive study of the miRNA transcriptome of B. napus seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus. RNA profiles in 2 different seed libraries (mature seeds and a pool of developing seed stages) of Brassica napus by deep sequencing (Illumina HiSeq2000).