Project description:Draft genome sequences of Pseudomonas isolates collected at Oak Ridge Field Research Center
| PRJNA428890 | ENA
Project description:Sediment and Groundwater Metagenomes from Subsurface Microbial Communities from the Oak Ridge National Laboratory Field Research Center, Oak Ridge, TN, USA
Project description:Parental and BXD mouse lines were received from Jackson Laboratory and The Oak Ridge National Laboratory. Splenocytes were isolated and stained with anti-CD4 and anti-CD25 antibodies. CD4+ T cells were separated into CD4+CD25+ Treg and CD4+CD25- Th cells. Tregs and Th cell were collected from spleens of 31 BXD recombinant inbred strains and of the parental mouse strains DBA/2J and C57BL/6J. Gene expression was measured by microarrays. The comparative analysis of the transcriptomes from the two cell populations allowed us to identify many novel differentially expressed genes. Furthermore, the analysis of cis- and trans-expression Quantitative Trail Loci (eQTLs) showed that both common and unique regulatory mechanisms are active in the two cell types.
Project description:The purpose of this study was to make a single comparison between Cqf genes expressed during the vegetative stages of infection on the telial host (oak leaf) versus the aecial host (pine stem). A large proportion of genes were expressed in both hosts and significantly differentially expressed genes were enriched for candidate fungal effectors (small secreted proteins). These results suggest that the Cqf rust fungus uses a largely common set of genes to create two very different infection phenotypes. This study was based on hybridizations to custom microarrays containing features representing 8692 gene models from a Cqf genome sequencing project midpoint assembly. Two Agilent 4 X 44K microarray slides were populated with 60-mer probes (1 to 5 per transcript), designed using AgilentM-bM-^@M-^Ys web-based eArray software. Labeled target cRNA (complementary RNA) was generated using AgilentM-bM-^@M-^Ys Low Input Quick Amp Labeling Kit, such that oak and pine samples were labeled with either cy3 or cy5 an equal number of times across the experiment. Each microarray was hybridized with labeled cRNA target derived from a single oak sample and labeled cRNA target derived from a single pine sample. There were a total of eight oak sample replications and eight pine sample replications. Target hybridization and scanning were performed by the University of FloridaM-bM-^@M-^Ys Interdisciplinary Center for Biotechnology Research using standard procedures and an Agilent G250B Scanner.
Project description:Globally, multiple heavy metal contamination is an increasingly common problem. As heavy metals have the potential to disrupt microbially-mediated biogeochemical cycling, it is critical to understand their impact on microbial physiology. However, systems-level studies on the effects of a combination of heavy metals on bacteria are lacking. Here, we use a native Bacillus cereus isolate from the subsurface of the Oak Ridge Reservation (ORR; Oak Ridge, TN, USA) subsurface— representing a highly abundant species at the site— to assess the combined impact of eight metal contaminants. Using this metal mixture and individual metals, all at concentrations based on the ORR site geochemistry, we performed growth experiments and proteomic analyses of the B. cereus strain, in combination with targeted MS-based metabolomics and gene expression profiling. We found that the combination of eight metals impacts cell physiology in a manner that could not have been predicted from summing phenotypic responses to the individual metals. Specifically, exposure to the metal mixture elicited global iron starvation responses not observed in any of the individual metal treatments. As nitrate is also a significant contaminant at the ORR site and nitrate and nitrite reductases are iron-containing enzymes, we also examined the effects of the metal mixture on reduction of nitrogen oxides. We found that the metal mixture inhibits the activity of these enzymes through a combination of direct enzymatic damage and post-transcriptional and post-translational regulation. Altogether, these data suggest that metal mixture studies are critical for understanding how multiple rather than individual metals influence microbial processes in the environment.